June  2018, 38(6): 3169-3188. doi: 10.3934/dcds.2018138

Normality and uniqueness of Lagrange multipliers

IIMAS, Universidad Nacional Autónoma de México, Apartado Postal 20-126, CDMX 01000, México

Who wants to be normal when you can be unique?
Helena Bonham Carter

Received  May 2017 Published  April 2018

In this paper we study, for certain problems in the calculus of variations and optimal control, two different questions related to uniqueness of multipliers appearing in first order necessary conditions. One deals with conditions under which a given multiplier associated with an extremal of a fixed function is unique, a property which, in nonlinear programming, is known to be equivalent to the strict Mangasarian-Fromovitz constraint qualification. We show that, for isoperimetric problems in the calculus of variations, a similar characterization holds, but not in optimal control where the corresponding condition is only sufficient for the uniqueness of the multiplier. The other question is related to the set of multipliers associated with all functions for which a solution to the constrained problem is given. We prove that, for both types of problems, this set is a singleton if and only if a strong normality assumption holds.

Citation: Karla L. Cortez, Javier F. Rosenblueth. Normality and uniqueness of Lagrange multipliers. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3169-3188. doi: 10.3934/dcds.2018138
References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, (1990). 

[2]

M. S. BazaraaH. D. Sherali and C. M. Shetty, Nonlinear Programming – Theory and Algorithms, John Wiley, New York, (1993). 

[3]

J. A. Becerril and J. F. Rosenblueth, Necessity for isoperimetric inequality constraints, Discrete and Continuous Dynamical Systems -A, 37 (2017), 1129-1158. 

[4]

J. A. Becerril and J. F. Rosenblueth, The importance of being normal, regular and proper in the calculus of variations, Journal of Optimization Theory & Applications, 172 (2017), 759-773. 

[5]

A. Ben-Tal, Second-order and related extremality conditions in nonlinear programming, Journal of Optimization Theory & Applications, 31 (1980), 143-165. 

[6]

G. Bigi and M. Castellani, Uniqueness of KKT multipliers in multiobjective optimization, Applied Mathematics Letters, 17 (2004), 1285-1290. 

[7]

J. F. Bonnans, Local analysis of Newton-type methods for variational inequalities and nonlinear programming, Applied Mathematics & Optimization, 29 (1994), 161-186. 

[8]

K. L. Cortez and J. F. Rosenblueth, A second order constraint qualification for certain classes of optimal control problems, WSEAS Transactions on Systems and Control, 11 (2016), 419-424. 

[9]

K. L. Cortez and J. F. Rosenblueth, Extended critical directions for time-control constrained problems, International Journal of Circuits, Systems and Signal Processing, 11 (2017), 1-11. 

[10]

O. FujiwaraS. P. Han and O. L. Mangasarian, Local duality of nonlinear programs, SIAM Journal of Control and Optimization, 22 (1984), 162-169. 

[11]

E. G. Gilbert and D. S. Bernstein, Second-order necessary conditions in optimal control: Accessory-problem results without normality conditions, Journal of Optimization Theory & Applications, 41 (1983), 75-106. 

[12]

G. GiorgiA. Guerraggio and J. Thierfelder, Mathematics of Optimization: Smooth and Nonsmooth Case, Elsevier, Amsterdam, (2004). 

[13]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York, (1966). 

[14]

M. R. Hestenes, Optimization Theory, The Finite Dimensional Case, John Wiley, New York, (1975). 

[15]

J. Kyparisis, On uniqueness of Kuhn-Tucker multipliers in nonlinear programming, Mathematical Programming, 32 (1985), 242-246. 

[16]

J. Kyparisis, Sensitivity analysis for nonlinear programs and variational inequalities with non-unique multipliers, Mathematics of Operations Research, 15 (1990), 286-298. 

[17]

F. Lempio and H. Maurer, Differential stability in infinite-dimensional nonlinear programming, Applied Mathematics & Optimization, 20 (1980), 139-152. 

[18]

E. J. McShane, The Lagrange Multiplier Rule, The American Mathematical Monthly, 80 (1973), 922-925. 

[19]

L. W. Neustadt, Optimization. A Theory of Necessary Conditions, Princeton University Press, Princeton, (1976). 

[20]

J. F. Rosenblueth, Convex cones and conjugacy for inequality control constraints, Journal of Convex Analysis, 14 (2007), 361-393. 

[21]

A. Shapiro, On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints, Journal of Optimization, 7 (1997), 508-518. 

[22]

G. Wachsmuth, On LICQ and the uniqueness of Lagrange multipliers, Operations Research Letters, 41 (2013), 78-80. 

show all references

Who wants to be normal when you can be unique?
Helena Bonham Carter

References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, (1990). 

[2]

M. S. BazaraaH. D. Sherali and C. M. Shetty, Nonlinear Programming – Theory and Algorithms, John Wiley, New York, (1993). 

[3]

J. A. Becerril and J. F. Rosenblueth, Necessity for isoperimetric inequality constraints, Discrete and Continuous Dynamical Systems -A, 37 (2017), 1129-1158. 

[4]

J. A. Becerril and J. F. Rosenblueth, The importance of being normal, regular and proper in the calculus of variations, Journal of Optimization Theory & Applications, 172 (2017), 759-773. 

[5]

A. Ben-Tal, Second-order and related extremality conditions in nonlinear programming, Journal of Optimization Theory & Applications, 31 (1980), 143-165. 

[6]

G. Bigi and M. Castellani, Uniqueness of KKT multipliers in multiobjective optimization, Applied Mathematics Letters, 17 (2004), 1285-1290. 

[7]

J. F. Bonnans, Local analysis of Newton-type methods for variational inequalities and nonlinear programming, Applied Mathematics & Optimization, 29 (1994), 161-186. 

[8]

K. L. Cortez and J. F. Rosenblueth, A second order constraint qualification for certain classes of optimal control problems, WSEAS Transactions on Systems and Control, 11 (2016), 419-424. 

[9]

K. L. Cortez and J. F. Rosenblueth, Extended critical directions for time-control constrained problems, International Journal of Circuits, Systems and Signal Processing, 11 (2017), 1-11. 

[10]

O. FujiwaraS. P. Han and O. L. Mangasarian, Local duality of nonlinear programs, SIAM Journal of Control and Optimization, 22 (1984), 162-169. 

[11]

E. G. Gilbert and D. S. Bernstein, Second-order necessary conditions in optimal control: Accessory-problem results without normality conditions, Journal of Optimization Theory & Applications, 41 (1983), 75-106. 

[12]

G. GiorgiA. Guerraggio and J. Thierfelder, Mathematics of Optimization: Smooth and Nonsmooth Case, Elsevier, Amsterdam, (2004). 

[13]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York, (1966). 

[14]

M. R. Hestenes, Optimization Theory, The Finite Dimensional Case, John Wiley, New York, (1975). 

[15]

J. Kyparisis, On uniqueness of Kuhn-Tucker multipliers in nonlinear programming, Mathematical Programming, 32 (1985), 242-246. 

[16]

J. Kyparisis, Sensitivity analysis for nonlinear programs and variational inequalities with non-unique multipliers, Mathematics of Operations Research, 15 (1990), 286-298. 

[17]

F. Lempio and H. Maurer, Differential stability in infinite-dimensional nonlinear programming, Applied Mathematics & Optimization, 20 (1980), 139-152. 

[18]

E. J. McShane, The Lagrange Multiplier Rule, The American Mathematical Monthly, 80 (1973), 922-925. 

[19]

L. W. Neustadt, Optimization. A Theory of Necessary Conditions, Princeton University Press, Princeton, (1976). 

[20]

J. F. Rosenblueth, Convex cones and conjugacy for inequality control constraints, Journal of Convex Analysis, 14 (2007), 361-393. 

[21]

A. Shapiro, On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints, Journal of Optimization, 7 (1997), 508-518. 

[22]

G. Wachsmuth, On LICQ and the uniqueness of Lagrange multipliers, Operations Research Letters, 41 (2013), 78-80. 

[1]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[2]

Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047

[3]

Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571

[4]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[5]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control and Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[6]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

[7]

Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022035

[8]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[9]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[10]

Tao Jie, Gao Yan. Computing shadow prices with multiple Lagrange multipliers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2307-2329. doi: 10.3934/jimo.2020070

[11]

Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021

[12]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[13]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial and Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[14]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[15]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[16]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[17]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[18]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[19]

Changjie Fang, Weimin Han. Stability analysis and optimal control of a stationary Stokes hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 995-1008. doi: 10.3934/eect.2020046

[20]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (538)
  • HTML views (232)
  • Cited by (7)

Other articles
by authors

[Back to Top]