
-
Previous Article
Low Mach number limit for a model of accretion disk
- DCDS Home
- This Issue
-
Next Article
Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families
Dicritical nilpotent holomorphic foliations
1. | Dpto. Ciencias - Sección Matemáticas, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 32, Peru |
2. | Dpto. Álgebra, Análisis Matemático, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7; 47011 Valladolid, Spain |
3. | Dpto. Ciencias - Sección Matemáticas, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 32, Peru |
We study in this paper several properties concerning singularities of foliations in $ {\left( {{\mathbb{C}}^{3}}\rm{,}\bf{0} \right)}$ that are pull-back of dicritical foliations in $ {\left( {{\mathbb{C}}^{2}}\rm{,}\bf{0} \right)}$. Particularly, we will investigate the existence of first integrals (holomorphic and meromorphic) and the dicriticalness of such a foliation. In the study of meromorphic first integrals we follow the same method used by R. Meziani and P. Sad in dimension two. While the foliations we study are pull-back of foliations in $ {\left( {{\mathbb{C}}^{2}}\rm{,}\bf{0} \right)}$, the adaptations are not straightforward.
References:
[1] |
C. Camacho,
Dicritical singularities of holomorphic vector fields, Contemporary Mathematics, 269 (2001), 39-45.
doi: 10.1090/conm/269/04328. |
[2] |
C. Camacho and A. Lins Neto,
Teoria Geométrica das Folheações, IMPA, Projeto Euclides, 1979. |
[3] |
F. Cano,
Reduction of the singularities of codimension one holomorphic foliations in dimension three, Annals of Math, 160 (2004), 907-1011.
doi: 10.4007/annals.2004.160.907. |
[4] |
F. Cano, M. Ravara-Vago and M. Soares,
Local Brunella's alternative I. RICH foliations, Int. Math. Res. Not. IMRN, 9 (2015), 2525-2575.
doi: 10.1093/imrn/rnu011. |
[5] |
F. Cano and D. Cerveau,
Desingularization of non-dicritical holomorphic foliations and existence of separatrices, Acta Math., 169 (1992), 1-103.
doi: 10.1007/BF02392757. |
[6] |
D. Cerveau and J. -F. Mattei, Formes intégrables holomorphes singulières,
Astérisque, 97 (1982), 193pp. |
[7] |
D. Cerveau and R. Moussu,
Groupes d'automorphismes de $ ({\mathbb{C}},0)$ et équations différentielles $ ydy+··· = 0$, Bull. Soc. Math. France, 116 (1988), 459-488.
doi: 10.24033/bsmf.2108. |
[8] |
D. Cerveau and J. Mozo Fernández,
Classification analytique des feuilletages singuliers réduits de codimension 1 en dimension $ n≥3$, Erg. Th. and Dyn. Systems, 22 (2002), 1041-1060.
doi: 10.1017/S0143385702000561. |
[9] |
V. Cossart, Desingularization in dimension 2, in Resolution of Surface Singularities,
Lecture Notes in Mathematics, Springer-Verlag, 1101 (1984), 79-98. |
[10] |
P. Fernández Sánchez and J. Mozo Fernández,
Quasi-ordinary cuspidal foliations in $ ({\mathbb{C}}^3,0)$, J. Differential Equations, 226 (2006), 250-268.
doi: 10.1016/j.jde.2005.09.006. |
[11] |
P. Fernández Sánchez, J. Mozo Fernández and H. Neciosup,
On codimension one foliations with prescribed cuspidal separatrix, J. Differential Equations, 256 (2014), 1702-1717.
doi: 10.1016/j.jde.2013.12.002. |
[12] |
J. Giraud, Desingularization in low dimension, in Resolution of Surface Singularities, Lecture Notes in Mathematics, Springer-Verlag, 1101 (1984), 50-78. |
[13] |
J. P. Jouanolou,
Équations de Pfaff Algébriques, Lecture Notes in Mathematics, 708, Springer-Verlag, 1979. |
[14] |
F. Loray,
A preparation theorem for codimension one foliations, Ann. of Math., 163 (2006), 709-722.
doi: 10.4007/annals.2006.163.709. |
[15] |
B. Malgrange,
Frobenius avec singularités. I. Codimension un, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 163-173.
|
[16] |
J. F. Mattei and R. Moussu,
Holonomie et intégrales premiéres, Ann. Sci. École Normale Sup., 13 (1980), 469-523.
|
[17] |
R. Meziani,
Classification analytique d'équations différentielles $ ydy+··· = 0$ et espaces de modules, Bol. Soc. Brasil Mat., 27 (1996), 23-53.
doi: 10.1007/BF01246703. |
[18] |
R. Meziani and P. Sad,
Singularités nilpotentes et intégrales premières, Publ. Mat., 51 (2007), 143-161.
doi: 10.5565/PUBLMAT_51107_07. |
[19] |
J. J. Morales-Ruiz,
Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Birkhäuser Progress in Mathematics, 1999.
doi: 10.1007/978-3-0348-8718-2. |
[20] |
Holonomie évanescente des équations différentielles dégénérées transverses, in Singularities and Dynamical Systems, North-Holland, 103 (1985), 161-173.
doi: 10.1016/S0304-0208(08)72123-6. |
show all references
References:
[1] |
C. Camacho,
Dicritical singularities of holomorphic vector fields, Contemporary Mathematics, 269 (2001), 39-45.
doi: 10.1090/conm/269/04328. |
[2] |
C. Camacho and A. Lins Neto,
Teoria Geométrica das Folheações, IMPA, Projeto Euclides, 1979. |
[3] |
F. Cano,
Reduction of the singularities of codimension one holomorphic foliations in dimension three, Annals of Math, 160 (2004), 907-1011.
doi: 10.4007/annals.2004.160.907. |
[4] |
F. Cano, M. Ravara-Vago and M. Soares,
Local Brunella's alternative I. RICH foliations, Int. Math. Res. Not. IMRN, 9 (2015), 2525-2575.
doi: 10.1093/imrn/rnu011. |
[5] |
F. Cano and D. Cerveau,
Desingularization of non-dicritical holomorphic foliations and existence of separatrices, Acta Math., 169 (1992), 1-103.
doi: 10.1007/BF02392757. |
[6] |
D. Cerveau and J. -F. Mattei, Formes intégrables holomorphes singulières,
Astérisque, 97 (1982), 193pp. |
[7] |
D. Cerveau and R. Moussu,
Groupes d'automorphismes de $ ({\mathbb{C}},0)$ et équations différentielles $ ydy+··· = 0$, Bull. Soc. Math. France, 116 (1988), 459-488.
doi: 10.24033/bsmf.2108. |
[8] |
D. Cerveau and J. Mozo Fernández,
Classification analytique des feuilletages singuliers réduits de codimension 1 en dimension $ n≥3$, Erg. Th. and Dyn. Systems, 22 (2002), 1041-1060.
doi: 10.1017/S0143385702000561. |
[9] |
V. Cossart, Desingularization in dimension 2, in Resolution of Surface Singularities,
Lecture Notes in Mathematics, Springer-Verlag, 1101 (1984), 79-98. |
[10] |
P. Fernández Sánchez and J. Mozo Fernández,
Quasi-ordinary cuspidal foliations in $ ({\mathbb{C}}^3,0)$, J. Differential Equations, 226 (2006), 250-268.
doi: 10.1016/j.jde.2005.09.006. |
[11] |
P. Fernández Sánchez, J. Mozo Fernández and H. Neciosup,
On codimension one foliations with prescribed cuspidal separatrix, J. Differential Equations, 256 (2014), 1702-1717.
doi: 10.1016/j.jde.2013.12.002. |
[12] |
J. Giraud, Desingularization in low dimension, in Resolution of Surface Singularities, Lecture Notes in Mathematics, Springer-Verlag, 1101 (1984), 50-78. |
[13] |
J. P. Jouanolou,
Équations de Pfaff Algébriques, Lecture Notes in Mathematics, 708, Springer-Verlag, 1979. |
[14] |
F. Loray,
A preparation theorem for codimension one foliations, Ann. of Math., 163 (2006), 709-722.
doi: 10.4007/annals.2006.163.709. |
[15] |
B. Malgrange,
Frobenius avec singularités. I. Codimension un, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 163-173.
|
[16] |
J. F. Mattei and R. Moussu,
Holonomie et intégrales premiéres, Ann. Sci. École Normale Sup., 13 (1980), 469-523.
|
[17] |
R. Meziani,
Classification analytique d'équations différentielles $ ydy+··· = 0$ et espaces de modules, Bol. Soc. Brasil Mat., 27 (1996), 23-53.
doi: 10.1007/BF01246703. |
[18] |
R. Meziani and P. Sad,
Singularités nilpotentes et intégrales premières, Publ. Mat., 51 (2007), 143-161.
doi: 10.5565/PUBLMAT_51107_07. |
[19] |
J. J. Morales-Ruiz,
Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Birkhäuser Progress in Mathematics, 1999.
doi: 10.1007/978-3-0348-8718-2. |
[20] |
Holonomie évanescente des équations différentielles dégénérées transverses, in Singularities and Dynamical Systems, North-Holland, 103 (1985), 161-173.
doi: 10.1016/S0304-0208(08)72123-6. |

[1] |
Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537 |
[2] |
Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93 |
[3] |
Radu Saghin. Note on homology of expanding foliations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349 |
[4] |
Boris Hasselblatt. Critical regularity of invariant foliations. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931 |
[5] |
Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79 |
[6] |
Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685 |
[7] |
Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639 |
[8] |
Yong Fang, Patrick Foulon, Boris Hasselblatt. Zygmund strong foliations in higher dimension. Journal of Modern Dynamics, 2010, 4 (3) : 549-569. doi: 10.3934/jmd.2010.4.549 |
[9] |
Mark Pollicott. $\mathbb Z^d$-covers of horosphere foliations. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 147-154. doi: 10.3934/dcds.2000.6.147 |
[10] |
Dmitri Panov. Foliations with unbounded deviation on $\mathbb T^2$. Journal of Modern Dynamics, 2009, 3 (4) : 589-594. doi: 10.3934/jmd.2009.3.589 |
[11] |
Misael Avendaño-Camacho, Isaac Hasse-Armengol, Eduardo Velasco-Barreras, Yury Vorobiev. The method of averaging for Poisson connections on foliations and its applications. Journal of Geometric Mechanics, 2020, 12 (3) : 343-361. doi: 10.3934/jgm.2020015 |
[12] |
Jorge Sotomayor, Michail Zhitomirskii. On pairs of foliations defined by vector fields in the plane. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 741-749. doi: 10.3934/dcds.2000.6.741 |
[13] |
Boris Hasselblatt and Amie Wilkinson. Prevalence of non-Lipschitz Anosov foliations. Electronic Research Announcements, 1997, 3: 93-98. |
[14] |
Danny Calegari. Geometry and topology of $\mathbb{R}$-covered foliations. Electronic Research Announcements, 2000, 6: 31-39. |
[15] |
Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747 |
[16] |
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81 |
[17] |
Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic and Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001 |
[18] |
John Guckenheimer. Continuation methods for principal foliations of embedded surfaces. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022007 |
[19] |
Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276 |
[20] |
Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]