In this paper, we deal with a coupled chemotaxis-fluid model with logistic source $γ n-μ n^2$ . We prove the existence of global classical solution for the chemotaxis-Stokes system in a bounded domain $Ω\subset \mathbb R^3$ for any large initial data. On the basis of this, we further prove that if $γ>0$ , the zero solution is not stable; if $γ = 0$ , the zero solution is globally asymptotically stable; and if $ 0 < γ < 16μ^2$ , the nontrivial steady state $\left(\fracγμ, \fracγμ, 0\right)$ is globally asymptotically stable.
Citation: |
[1] |
N. Bellomo, A. Bellouquid and N. Chouhad, From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid, Math. Models Methods Appl. Sci., 26 (2016), 2041-2069.
doi: 10.1142/S0218202516400078.![]() ![]() ![]() |
[2] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x.![]() ![]() ![]() |
[3] |
J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in ${\mathbb R}^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616.
doi: 10.1016/j.crma.2004.08.011.![]() ![]() ![]() |
[4] |
E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Analysis: Real World Applications, 21 (2015), 110-126.
doi: 10.1016/j.nonrwa.2014.07.001.![]() ![]() ![]() |
[5] |
G. P. Galdi, An introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8.![]() ![]() ![]() |
[6] |
H. Hajajej, X. Yu and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under lorentz norms, J. Math. Anal. Appl., 396 (2012), 569-577.
doi: 10.1016/j.jmaa.2012.06.054.![]() ![]() ![]() |
[7] |
M. A. Herrero, E. Medina and J. J. L. Velazquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754.
doi: 10.1088/0951-7715/10/6/016.![]() ![]() ![]() |
[8] |
M. Hieber and J. Pruss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations, Comm. Partial Diff. Eqs., 22 (1997), 1647-1669.
doi: 10.1080/03605309708821314.![]() ![]() ![]() |
[9] |
S. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763.
doi: 10.1137/0134064.![]() ![]() ![]() |
[10] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
[11] |
H. Kozono and T. Yanagisawa, Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data, Math. Z., 262 (2009), 27-39.
doi: 10.1007/s00209-008-0361-2.![]() ![]() ![]() |
[12] |
J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26 (2016), 2071-2109.
doi: 10.1142/S021820251640008X.![]() ![]() ![]() |
[13] |
J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. I. H. Poincaré -AN, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005.![]() ![]() ![]() |
[14] |
J. Liu and Y. Wang, Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, J. Differential Equations, 261 (2016), 967-999.
doi: 10.1016/j.jde.2016.03.030.![]() ![]() ![]() |
[15] |
A. Lorz, Coupled chemotaxis fluid model, Math. Mod. Meth. Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507.![]() ![]() ![]() |
[16] |
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.
![]() ![]() |
[17] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.
doi: 10.1016/S0362-546X(01)00815-X.![]() ![]() ![]() |
[18] |
H. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976.![]() ![]() ![]() |
[19] |
T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367.
doi: 10.4310/MAA.2001.v8.n2.a9.![]() ![]() ![]() |
[20] |
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X.![]() ![]() ![]() |
[21] |
Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.
doi: 10.1007/s00033-015-0541-y.![]() ![]() ![]() |
[22] |
Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), Art. 138, 23 pp.
doi: 10.1007/s00033-016-0732-1.![]() ![]() ![]() |
[23] |
I. Tuval, L. Cisneros, C. Dombrowski, C. Wolgemuth, J. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102.![]() ![]() |
[24] |
Y. Wang and X. Cao, Global classical solutions of a 3D chemotaxis-Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3235-3254.
doi: 10.3934/dcdsb.2015.20.3235.![]() ![]() ![]() |
[25] |
Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving atensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578-7609.
doi: 10.1016/j.jde.2015.08.027.![]() ![]() ![]() |
[26] |
M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865.![]() ![]() ![]() |
[27] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
[28] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
[29] |
J. Zheng, Boundedness in a three-dimensional chemotaxis-fluid system involving tensorvalued sensitivity with saturation, J. Math. Anal. Appl., 442 (2016), 353-375.
doi: 10.1016/j.jmaa.2016.04.047.![]() ![]() ![]() |