-
Previous Article
Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system with signal-dependent diffusion and sensitivity
- DCDS Home
- This Issue
-
Next Article
Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source
On critical Choquard equation with potential well
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China |
$-Δ u+(λ V(x)-β)u = \big(|x|^{-μ}* |u|^{2_{μ}^{*}}\big)|u|^{2_{μ}^{*}-2}u\;\;\;\;\;\;\;\;\;\;\mbox{in}\;\; \mathbb{R}^N,$ |
$λ, β∈\mathbb{R}^+$ |
$0<μ<N, N≥4, 2_{μ}^{*} = (2N-μ)/(N-2)$ |
$V∈ \mathcal{C}(\mathbb{R}^N, \mathbb{R})$ |
$Ω : = \mbox{int} V^{-1}(0)$ |
$β>0$ |
$-Δ +λ V(x)-β$ |
$V^{-1}(0)$ |
$λ$ |
$λ$ |
$0<β<β_{1}$ |
$β_{1}$ |
$-Δ$ |
$Ω$ |
References:
[1] |
N. Ackermann,
On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423-443.
doi: 10.1007/s00209-004-0663-y. |
[2] |
N. Ackermann,
A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 277-320.
doi: 10.1016/j.jfa.2005.11.010. |
[3] |
C. O. Alves, D. Cassani, C. Tarsi and M. Yang,
Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in $\mathbb{R}^2$, J. Differential Equations, 261 (2016), 1933-1972.
doi: 10.1016/j.jde.2016.04.021. |
[4] |
C. O. Alves, F. Gao, M. Squassina and M. Yang,
Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988.
doi: 10.1016/j.jde.2017.05.009. |
[5] |
C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), Art. 48, 28 pp.
doi: 10.1007/s00526-016-0984-9. |
[6] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[7] |
T. Bartsch, A. Pankov and Z. Q. Wang,
Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.
doi: 10.1142/S0219199701000494. |
[8] |
T. Bartsch and Z. Q. Wang,
Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366-384.
doi: 10.1007/PL00001511. |
[9] |
V. Benci and G. Cerami,
The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), 79-93.
doi: 10.1007/BF00375686. |
[10] |
H. Brézis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[11] |
B. Buffoni, L. Jeanjean and C. A. Stuart,
Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc., 119 (1993), 179-186.
doi: 10.1090/S0002-9939-1993-1145940-X. |
[12] |
S. Cingolani, M. Clapp and S. Secchi,
Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.
doi: 10.1007/s00033-011-0166-8. |
[13] |
M. Clapp and Y. Ding,
Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys., 55 (2004), 592-605.
doi: 10.1007/s00033-004-1084-9. |
[14] |
M. Clapp and Y. Ding,
Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential, Differential Integral Equations, 16 (2003), 981-992.
|
[15] |
M. Clapp and D. Salazar,
Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1-15.
doi: 10.1016/j.jmaa.2013.04.081. |
[16] |
Y. Ding,
Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.
doi: 10.1016/j.jde.2010.03.022. |
[17] |
Y. Ding and K. Tanaka,
Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manus. Math., 112 (2003), 109-135.
doi: 10.1007/s00229-003-0397-x. |
[18] |
F. Gao and M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci China Math. |
[19] |
F. Gao and M. Yang,
On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006-1041.
doi: 10.1016/j.jmaa.2016.11.015. |
[20] |
F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., https://doi.org/10.1142/S0219199717500377.
doi: 10.1142/S0219199717500377. |
[21] |
M. Ghimenti, V. Moroz and J. Van Schaftingen,
Least Action nodal solutions for ghe quadratic Choquard equation, Proc. Amer. Math. Soc., 145 (2017), 737-747.
doi: 10.1090/proc/13247. |
[22] |
M. Ghimenti and J. Van Schaftingen,
Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107-135.
doi: 10.1016/j.jfa.2016.04.019. |
[23] |
Y. Guo and Z. Tang,
Multi-bump solutions for Schrödinger equation involving critical growth and potential wells, Discrete Contin. Dyn. Syst., 35 (2015), 3393-3415.
doi: 10.3934/dcds.2015.35.3393. |
[24] |
Y. Guo and Z. Tang,
Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Differential Equations, 259 (2015), 6038-6071.
doi: 10.1016/j.jde.2015.07.015. |
[25] |
Y. S. Jiang and H. S. Zhou,
Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.
doi: 10.1016/j.jde.2011.05.006. |
[26] |
E. Lenzmann,
Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1-27.
doi: 10.2140/apde.2009.2.1. |
[27] |
E. H. Lieb,
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.
|
[28] |
E. H. Lieb and M. Loss, Analysis, Gradute Studies in Mathematics, 1997.
doi: 10.1090/gsm/014. |
[29] |
P.L. Lions,
The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.
doi: 10.1016/0362-546X(80)90016-4. |
[30] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[31] |
V. Moroz and J. Van Schaftingen,
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007. |
[32] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equation: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12pp.
doi: 10.1142/S0219199715500054. |
[33] |
S. Pekar, Untersuchungüber die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[34] |
R. Penrose,
On gravity's role in quantum state reduction, Gen. Relativ. Gravitat., 28 (1996), 581-600.
doi: 10.1007/BF02105068. |
[35] |
G. Siciliano,
Multiple positive solutions for a Schrödinger-Poisson-Slater system, J. Math. Anal. Appl., 365 (2010), 288-299.
doi: 10.1016/j.jmaa.2009.10.061. |
[36] |
Z. Tang,
Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials, Commun. Pure Appl. Anal., 13 (2014), 237-248.
doi: 10.3934/cpaa.2014.13.237. |
[37] |
J. C. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22 pp.
doi: 10.1063/1.3060169. |
[38] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
show all references
References:
[1] |
N. Ackermann,
On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423-443.
doi: 10.1007/s00209-004-0663-y. |
[2] |
N. Ackermann,
A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 277-320.
doi: 10.1016/j.jfa.2005.11.010. |
[3] |
C. O. Alves, D. Cassani, C. Tarsi and M. Yang,
Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in $\mathbb{R}^2$, J. Differential Equations, 261 (2016), 1933-1972.
doi: 10.1016/j.jde.2016.04.021. |
[4] |
C. O. Alves, F. Gao, M. Squassina and M. Yang,
Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988.
doi: 10.1016/j.jde.2017.05.009. |
[5] |
C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), Art. 48, 28 pp.
doi: 10.1007/s00526-016-0984-9. |
[6] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[7] |
T. Bartsch, A. Pankov and Z. Q. Wang,
Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.
doi: 10.1142/S0219199701000494. |
[8] |
T. Bartsch and Z. Q. Wang,
Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366-384.
doi: 10.1007/PL00001511. |
[9] |
V. Benci and G. Cerami,
The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), 79-93.
doi: 10.1007/BF00375686. |
[10] |
H. Brézis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[11] |
B. Buffoni, L. Jeanjean and C. A. Stuart,
Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc., 119 (1993), 179-186.
doi: 10.1090/S0002-9939-1993-1145940-X. |
[12] |
S. Cingolani, M. Clapp and S. Secchi,
Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.
doi: 10.1007/s00033-011-0166-8. |
[13] |
M. Clapp and Y. Ding,
Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys., 55 (2004), 592-605.
doi: 10.1007/s00033-004-1084-9. |
[14] |
M. Clapp and Y. Ding,
Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential, Differential Integral Equations, 16 (2003), 981-992.
|
[15] |
M. Clapp and D. Salazar,
Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1-15.
doi: 10.1016/j.jmaa.2013.04.081. |
[16] |
Y. Ding,
Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.
doi: 10.1016/j.jde.2010.03.022. |
[17] |
Y. Ding and K. Tanaka,
Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manus. Math., 112 (2003), 109-135.
doi: 10.1007/s00229-003-0397-x. |
[18] |
F. Gao and M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci China Math. |
[19] |
F. Gao and M. Yang,
On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006-1041.
doi: 10.1016/j.jmaa.2016.11.015. |
[20] |
F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., https://doi.org/10.1142/S0219199717500377.
doi: 10.1142/S0219199717500377. |
[21] |
M. Ghimenti, V. Moroz and J. Van Schaftingen,
Least Action nodal solutions for ghe quadratic Choquard equation, Proc. Amer. Math. Soc., 145 (2017), 737-747.
doi: 10.1090/proc/13247. |
[22] |
M. Ghimenti and J. Van Schaftingen,
Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107-135.
doi: 10.1016/j.jfa.2016.04.019. |
[23] |
Y. Guo and Z. Tang,
Multi-bump solutions for Schrödinger equation involving critical growth and potential wells, Discrete Contin. Dyn. Syst., 35 (2015), 3393-3415.
doi: 10.3934/dcds.2015.35.3393. |
[24] |
Y. Guo and Z. Tang,
Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Differential Equations, 259 (2015), 6038-6071.
doi: 10.1016/j.jde.2015.07.015. |
[25] |
Y. S. Jiang and H. S. Zhou,
Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.
doi: 10.1016/j.jde.2011.05.006. |
[26] |
E. Lenzmann,
Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1-27.
doi: 10.2140/apde.2009.2.1. |
[27] |
E. H. Lieb,
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.
|
[28] |
E. H. Lieb and M. Loss, Analysis, Gradute Studies in Mathematics, 1997.
doi: 10.1090/gsm/014. |
[29] |
P.L. Lions,
The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.
doi: 10.1016/0362-546X(80)90016-4. |
[30] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[31] |
V. Moroz and J. Van Schaftingen,
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007. |
[32] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equation: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12pp.
doi: 10.1142/S0219199715500054. |
[33] |
S. Pekar, Untersuchungüber die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[34] |
R. Penrose,
On gravity's role in quantum state reduction, Gen. Relativ. Gravitat., 28 (1996), 581-600.
doi: 10.1007/BF02105068. |
[35] |
G. Siciliano,
Multiple positive solutions for a Schrödinger-Poisson-Slater system, J. Math. Anal. Appl., 365 (2010), 288-299.
doi: 10.1016/j.jmaa.2009.10.061. |
[36] |
Z. Tang,
Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials, Commun. Pure Appl. Anal., 13 (2014), 237-248.
doi: 10.3934/cpaa.2014.13.237. |
[37] |
J. C. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22 pp.
doi: 10.1063/1.3060169. |
[38] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[1] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022 |
[2] |
Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015 |
[3] |
Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951 |
[4] |
Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure and Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008 |
[5] |
Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935 |
[6] |
Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074 |
[7] |
Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027 |
[8] |
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 |
[9] |
Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171 |
[10] |
Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018 |
[11] |
Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653 |
[12] |
Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164 |
[13] |
Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057 |
[14] |
Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018 |
[15] |
Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791 |
[16] |
Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128 |
[17] |
Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 |
[18] |
Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 |
[19] |
Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223 |
[20] |
Yu Su, Zhaosheng Feng. Ground state solutions and decay estimation of Choquard equation with critical exponent and Dipole potential. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022112 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]