In this paper we study the long-time behavior of a nonlocal Cahn-Hilliard system with singular potential, degenerate mobility, and a reaction term. In particular, we prove the existence of a global attractor with finite fractal dimension, the existence of an exponential attractor, and convergence to equilibria for two physically relevant classes of reaction terms.
Citation: |
H. Abels
and M. Wilke
, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007)
, 3176-3193.
doi: 10.1016/j.na.2006.10.002.![]() ![]() ![]() |
|
G. Alberti
and G. Bellettini
, A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies, European J. Appl. Math., 9 (1998)
, 261-284.
doi: 10.1017/S0956792598003453.![]() ![]() ![]() |
|
M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Phys. Rev. A, 41 (1990), p6763.
![]() |
|
P. W. Bates
and J. Han
, The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl., 311 (2005)
, 289-312.
doi: 10.1016/j.jmaa.2005.02.041.![]() ![]() ![]() |
|
A. L. Bertozzi
, S. Esedoḡlu
and A. Gillette
, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16 (2007)
, 285-291.
doi: 10.1109/TIP.2006.887728.![]() ![]() ![]() |
|
J. W. Cahn
, On spinodal decomposition, Acta Metall., 9 (1961)
, 795-801.
doi: 10.1002/9781118788295.ch11.![]() ![]() |
|
J. W. Cahn
and J. E. Hilliard
, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958)
, 258-267.
doi: 10.1002/9781118788295.ch4.![]() ![]() |
|
L. Cherfils
, H. Fakih
and A. Miranville
, Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Inverse Probl. Imaging, 9 (2015)
, 105-125.
doi: 10.3934/ipi.2015.9.105.![]() ![]() ![]() |
|
L. Cherfils
, H. Fakih
and A. Miranville
, On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci., 8 (2015)
, 1123-1140.
doi: 10.1137/140985627.![]() ![]() ![]() |
|
L. Cherfils
, A. Miranville
and S. Zelik
, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011)
, 561-596.
doi: 10.1007/s00032-011-0165-4.![]() ![]() ![]() |
|
L. Cherfils
, A. Miranville
and S. Zelik
, On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014)
, 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013.![]() ![]() ![]() |
|
F. Della Porta and M. Grasselli, Convective nonlocal Cahn-Hilliard equations with reaction terms, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1529–1553, arXiv: math/0605406.
doi: 10.3934/dcdsb.2015.20.1529.![]() ![]() ![]() |
|
M. Efendiev
, A. Miranville
and S. Zelik
, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci., 330 (2000)
, 713-718.
doi: 10.1016/S0764-4442(00)00259-7.![]() ![]() ![]() |
|
C. M. Elliott
and H. Garcke
, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996)
, 404-423.
doi: 10.1137/S0036141094267662.![]() ![]() ![]() |
|
L. C. Evans,
Partial Differential Equations, American Mathematical Society, New York, 1998.
![]() ![]() |
|
H. Fakih
, A Cahn-Hilliard equation with a proliferation term for biological and chemical applications, Asymptot. Anal., 94 (2015)
, 71-104.
doi: 10.3233/ASY-151306.![]() ![]() ![]() |
|
E. Feireisl
, F. Issard-Roch
and H. Petzeltová
, A non-smooth version of the Lojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004)
, 1-21.
doi: 10.1016/j.jde.2003.10.026.![]() ![]() ![]() |
|
S. Frigeri
and M. Grasselli
, Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system, J. Dynam. Differential Equations, 24 (2012)
, 827-856.
doi: 10.1007/s10884-012-9272-3.![]() ![]() ![]() |
|
S. Frigeri
, M. Grasselli
and E. Rocca
, A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility, Nonlinearity, 28 (2015)
, 1257-1293.
doi: 10.1088/0951-7715/28/5/1257.![]() ![]() ![]() |
|
H. Gajewski
and K. Zacharias
, On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003)
, 11-31.
doi: 10.1016/S0022-247X(02)00425-0.![]() ![]() ![]() |
|
C. G. Gal
and M. Grasselli
, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010)
, 401-436.
doi: 10.1016/j.anihpc.2009.11.013.![]() ![]() ![]() |
|
C. G. Gal
and M. Grasselli
, Longtime behavior of nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 34 (2014)
, 145-179.
doi: 10.3934/dcds.2014.34.145.![]() ![]() ![]() |
|
H. Garcke
, B. Nestler
and B. Stoth
, On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Phys. D, 115 (1998)
, 87-108.
doi: 10.1016/S0167-2789(97)00227-3.![]() ![]() ![]() |
|
H. Garcke
, M. Rumpf
and U. Weikard
, The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies, Interfaces Free Bound., 3 (2001)
, 101-118.
doi: 10.4171/IFB/34.![]() ![]() ![]() |
|
G. Giacomin
and J. L. Lebowitz
, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, J. Stat. Phys, 87 (1997)
, 37-61.
doi: 10.1007/BF02181479.![]() ![]() ![]() |
|
Z. Guan
, J. S. Lowengrub
, C. Wang
and S. M. Wise
, Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014)
, 48-71.
doi: 10.1016/j.jcp.2014.08.001.![]() ![]() ![]() |
|
E. Khain and L. M. Sander, Generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129.
doi: 10.1103/PhysRevE.77.051129.![]() ![]() |
|
N. Q. Le
, A Gamma-convergence approach to the Cahn-Hilliard equation, Calc. Var. Partial Differential Equations, 32 (2008)
, 499-522.
doi: 10.1007/s00526-007-0150-5.![]() ![]() ![]() |
|
M. Liero and S. Reichelt, Homogenization of Cahn-Hilliard-type equations via evolutionary Γ-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Art. 6, 31 pp.
doi: 10.1007/s00030-018-0495-9.![]() ![]() ![]() |
|
S. Londen
and H. Petzeltová
, Convergence of solutions of a non-local phase-field system, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011)
, 653-670.
doi: 10.3934/dcdss.2011.4.653.![]() ![]() ![]() |
|
S. Londen
and H. Petzeltová
, Regularity and separation from potential barriers for a non-local phase-field system, J. Math. Anal. Appl., 379 (2011)
, 724-735.
doi: 10.1016/j.jmaa.2011.02.003.![]() ![]() ![]() |
|
S. Melchionna
and E. Rocca
, On a nonlocal Cahn-Hilliard equation with a reaction term, Adv. Math. Sci. Appl., 24 (2014)
, 461-497.
![]() ![]() |
|
A. Miranville
, Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput., 1 (2011)
, 523-536.
![]() ![]() |
|
L. Modica
and S. Mortola
, Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. B (5), 14 (1977)
, 285-299.
![]() ![]() |
|
L. Nirenberg, On elliptic partial differential equations, in Il Principio Di Minimo E Sue Applicazioni Alle Equazioni Funzionali), Springer, (2011), 1–48.
doi: 10.1007/978-3-642-10926-3_1.![]() ![]() |
|
J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Vol. 28, Cambridge University Press, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
Illustration of