
-
Previous Article
The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form
- DCDS Home
- This Issue
-
Next Article
Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction
Impulsive control of conservative periodic equations and systems: Variational approach
1. | Department of Mathematics and NTIS, University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic |
2. | NTIS, University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic |
Using the variational structure of the second order periodic problems we find an optimal impulsive control which forces the conservative system into a periodic motion. In particular, our main results concern the system of charged planar pendulums with external disturbances and neglected friction. Such a system might serve as a model for coupled micromechanical array.
References:
[1] |
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, Philadelphia, 1976. Google Scholar |
[2] |
D. D. Bainov and P. S. Simeonov,
Impulsive Differential Equations: Periodic Solutions and Applications, Harlow, Longman, 1993. |
[3] |
E. Buks and M. L. Roukes,
Electrically tunable collective response in a coupled micromechanical array, J. Microelectromech. Syst., 11 (2002), 802-807.
doi: 10.1109/JMEMS.2002.805056. |
[4] |
T. E. Carter,
Optimal impulsive space trajectories based on linear equations, J. Optim. Theory Appl., 70 (1991), 277-297.
doi: 10.1007/BF00940627. |
[5] |
T. E. Carter,
Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dynam. Control, 10 (2000), 219-227.
doi: 10.1023/A:1008376427023. |
[6] |
P. Drábek and M. Langerová, Quasilinear boundary value problem with impulses: Variational approach to resonance problem, Bound. Value Probl., 2014 (2014), 14pp.
doi: 10.1186/1687-2770-2014-64. |
[7] |
P. Drábek and M. Langerová,
On the second order periodic problem at resonance with impulses, J. Math. Anal. Appl., 428 (2015), 1339-1353.
doi: 10.1016/j.jmaa.2015.03.075. |
[8] |
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, 2nd edition, Birkhäuser, Springer Basel, 2013.
doi: 10.1007/978-3-0348-0387-8. |
[9] |
B. S. Kalinin, On oscillations of mathematical pendulum with striking impulse, Differ. Uravn., 7 (1969), 1267-1274. Google Scholar |
[10] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Cambridge, 1989.
doi: 10.1142/0906. |
[11] |
X. Liu and A. R. Willms,
Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft, Math. Probl. Eng., 2 (1996), 277-299.
doi: 10.1155/S1024123X9600035X. |
[12] |
J. Mawhin and M. Willem,
Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations, 52 (1984), 264-287.
doi: 10.1016/0022-0396(84)90180-3. |
[13] |
J. Mawhin and M. Willem,
Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in Nonlinear Analysis and Optimization, Lect. Notes Math., (1984), 181-192.
doi: 10.1007/BFb0101500. |
[14] |
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[15] |
J. J. Nieto and D. O'Regan,
Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 10 (2009), 680-690.
doi: 10.1016/j.nonrwa.2007.10.022. |
[16] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
doi: 10.1142/9789812798664. |
[17] |
Y. Tian and W. Ge,
Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51 (2008), 509-527.
doi: 10.1017/S0013091506001532. |
[18] |
M. Willem, Oscillations forcées de systémes hamiltoniens, Publications Mathematiques de la Faculté des Sciences de Besancon, Besancon, 1981. Google Scholar |
[19] |
T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer-Verlag Berlin Heidelberg, 2001. |
show all references
References:
[1] |
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, Philadelphia, 1976. Google Scholar |
[2] |
D. D. Bainov and P. S. Simeonov,
Impulsive Differential Equations: Periodic Solutions and Applications, Harlow, Longman, 1993. |
[3] |
E. Buks and M. L. Roukes,
Electrically tunable collective response in a coupled micromechanical array, J. Microelectromech. Syst., 11 (2002), 802-807.
doi: 10.1109/JMEMS.2002.805056. |
[4] |
T. E. Carter,
Optimal impulsive space trajectories based on linear equations, J. Optim. Theory Appl., 70 (1991), 277-297.
doi: 10.1007/BF00940627. |
[5] |
T. E. Carter,
Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dynam. Control, 10 (2000), 219-227.
doi: 10.1023/A:1008376427023. |
[6] |
P. Drábek and M. Langerová, Quasilinear boundary value problem with impulses: Variational approach to resonance problem, Bound. Value Probl., 2014 (2014), 14pp.
doi: 10.1186/1687-2770-2014-64. |
[7] |
P. Drábek and M. Langerová,
On the second order periodic problem at resonance with impulses, J. Math. Anal. Appl., 428 (2015), 1339-1353.
doi: 10.1016/j.jmaa.2015.03.075. |
[8] |
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, 2nd edition, Birkhäuser, Springer Basel, 2013.
doi: 10.1007/978-3-0348-0387-8. |
[9] |
B. S. Kalinin, On oscillations of mathematical pendulum with striking impulse, Differ. Uravn., 7 (1969), 1267-1274. Google Scholar |
[10] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Cambridge, 1989.
doi: 10.1142/0906. |
[11] |
X. Liu and A. R. Willms,
Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft, Math. Probl. Eng., 2 (1996), 277-299.
doi: 10.1155/S1024123X9600035X. |
[12] |
J. Mawhin and M. Willem,
Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations, 52 (1984), 264-287.
doi: 10.1016/0022-0396(84)90180-3. |
[13] |
J. Mawhin and M. Willem,
Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in Nonlinear Analysis and Optimization, Lect. Notes Math., (1984), 181-192.
doi: 10.1007/BFb0101500. |
[14] |
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[15] |
J. J. Nieto and D. O'Regan,
Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 10 (2009), 680-690.
doi: 10.1016/j.nonrwa.2007.10.022. |
[16] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
doi: 10.1142/9789812798664. |
[17] |
Y. Tian and W. Ge,
Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51 (2008), 509-527.
doi: 10.1017/S0013091506001532. |
[18] |
M. Willem, Oscillations forcées de systémes hamiltoniens, Publications Mathematiques de la Faculté des Sciences de Besancon, Besancon, 1981. Google Scholar |
[19] |
T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer-Verlag Berlin Heidelberg, 2001. |


[1] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[2] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[3] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[4] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[5] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[6] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[7] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[8] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[9] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[10] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[11] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[12] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[13] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[14] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[15] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[16] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[17] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[18] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[19] |
Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047 |
[20] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]