• Previous Article
    Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros
  • DCDS Home
  • This Issue
  • Next Article
    Impulsive control of conservative periodic equations and systems: Variational approach
August  2018, 38(8): 3803-3829. doi: 10.3934/dcds.2018165

The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form

a. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China

b. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

c. 

School of Mathematics, Sichuan University, Chengdu 610064, China

d. 

Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048, China

1 Partially supported by NSFC (Nos. 11401555, 11771341), Anhui Provincial Natural Science Foundation (No. 1608085QA01)
2 Partially supported by NSFC (Nos. 11131004, 11671215 and 11790271), MCME and LPMC of MOE of China, Nankai University and BAICIT of Capital Normal University
3 Corresponding author: Yuming Xiao. Supported by the Sichuan Science and Technology Program (No. 2018JY0140)

Received  July 2017 Revised  February 2018 Published  May 2018

Let $M = S^n/ Γ$ and $h$ be a nontrivial element of finite order $p$ in $π_1(M)$, where the integer $n≥2$, $Γ$ is a finite group which acts freely and isometrically on the $n$-sphere and therefore $M$ is diffeomorphic to a compact space form. In this paper, we establish first the resonance identity for non-contractible homologically visible minimal closed geodesics of the class $[h]$ on every Finsler compact space form $(M, F)$ when there exist only finitely many distinct non-contractible closed geodesics of the class $[h]$ on $(M, F)$. Then as an application of this resonance identity, we prove the existence of at least two distinct non-contractible closed geodesics of the class $[h]$ on $(M, F)$ with a bumpy Finsler metric, which improves a result of Taimanov in [39] by removing some additional conditions. Also our results extend the resonance identity and multiplicity results on $\mathbb{R}P^n$ in [25] to general compact space forms.

Citation: Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165
References:
[1]

D. V. Anosov, Geodesics in Finsler geometry, Proc. I. C. M. (Vancouver, B. C. 1974), 2 (1975), 293-297; Montreal (Russian), Amer. Math. Soc. Transl., 109 (1977), 81-85.  Google Scholar

[2]

T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, GTM 41, 1990. doi: 10.1007/978-1-4612-0999-7.  Google Scholar

[3]

V. Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math., 4 (1993), 1-10.  doi: 10.1142/S0129167X93000029.  Google Scholar

[4]

V. Bangert and W. Klingenberg, Homology generated by iterated closed geodesics, Topology., 22 (1983), 379-388.  doi: 10.1016/0040-9383(83)90033-2.  Google Scholar

[5]

V. Bangert and Y. Long, The existence of two closed geodesics on every Finsler 2-sphere, Math. Ann., 346 (2010), 335-366. doi: 10.1007/s00208-009-0401-1.  Google Scholar

[6]

R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206.  doi: 10.1002/cpa.3160090204.  Google Scholar

[7]

K. Burns and S. Matveev, Open problems and questions about closed geodesics, arXiv: 1308.5417v2, 2014. Google Scholar

[8]

H. Duan and Y. Long, Multiple closed geodesics on bumpy Finsler n-spheres, J. Diff. Equa., 233 (2007), 221-240.  doi: 10.1016/j.jde.2006.10.002.  Google Scholar

[9]

H. Duan and Y. Long, The index growth and multiplicity of closed geodesics, J. Funct. Anal., 259 (2010), 1850-1913.  doi: 10.1016/j.jfa.2010.05.003.  Google Scholar

[10]

H. DuanY. Long and W. Wang, Two closed geodesics on compact simply-connected bumpy Finsler manifolds, J. Differ. Geom., 104 (2016), 275-289.  doi: 10.4310/jdg/1476367058.  Google Scholar

[11]

H. Duan, Y. Long and W. Wang, The enhanced common index jump theorem for symplectic paths and non-hyperbolic closed geodesics on Finsler manifolds, Calc. Var. and PDEs., 55 (2016), Art. 145, 28 pp. doi: 10.1007/s00526-016-1075-7.  Google Scholar

[12]

H. DuanY. Long and Y. Xiao, Two closed geodesics on $\mathbb{R}P$ with a bumpy Finsler metric, Calc. Var. and PDEs, 54 (2015), 2883-2894.  doi: 10.1007/s00526-015-0887-1.  Google Scholar

[13]

J. Franks, Geodesics on S2 and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418.  doi: 10.1007/BF02100612.  Google Scholar

[14]

D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology, 8 (1969), 361-369.  doi: 10.1016/0040-9383(69)90022-6.  Google Scholar

[15]

D. Gromoll and W. Meyer, Periodic geodesics on compact Riemannian manifolds, J. Diff. Geom., 3 (1969), 493-510.  doi: 10.4310/jdg/1214429070.  Google Scholar

[16]

N. Hingston, Equivariant Morse theory and closed geodesics, J. Diff. Geom., 19 (1984), 85-116.  doi: 10.4310/jdg/1214438424.  Google Scholar

[17]

N. Hingston, On the growth of the number of closed geodesics on the two-sphere, Inter. Math. Research Notices., 9 (1993), 253-262.  doi: 10.1155/S1073792893000285.  Google Scholar

[18]

N. Hingston and H.-B. Rademacher, Resonance for loop homology of spheres, J. Differ. Geom., 93 (2013), 133-174.  doi: 10.4310/jdg/1357141508.  Google Scholar

[19]

A. B. Katok, Ergodic properties of degenerate integrable Hamiltonian systems. Izv. Akad. Nauk. SSSR, 37 (1973), 539-576; [Russian]; Math. USSR-Izv., 7 (1973), 535-571.  Google Scholar

[20]

W. Klingenberg, Lectures on Closed Geodesics, Springer-Verlag, Berlin, heidelberg, New York, 1978.  Google Scholar

[21]

W. Klingenberg, Riemannian Geometry. De Gruyter, 2nd Rev ed. edition, 1995. doi: 10.1515/9783110905120.  Google Scholar

[22]

C. Liu, The relation of the morse index of closed geodesics with the maslov-type index of symplectic paths, Acta Math. Sinica, 21 (2005), 237-248.  doi: 10.1007/s10114-004-0406-3.  Google Scholar

[23]

C. Liu and Y. Long, Iterated index formulae for closed geodesics with applications, Science in China., 45 (2002), 9-28.   Google Scholar

[24]

H. Liu, The Fadell-Rabinowitz index and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^{n}$, J. Differential Equations, 262 (2017), 2540-2553.  doi: 10.1016/j.jde.2016.11.015.  Google Scholar

[25]

H. Liu and Y. Xiao, Resonance identity and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^{n}$, Advances in Math., 318 (2017), 158-190.  doi: 10.1016/j.aim.2017.07.024.  Google Scholar

[26]

Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.  doi: 10.2140/pjm.1999.187.113.  Google Scholar

[27]

Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Advances in Math., 154 (2000), 76-131.  doi: 10.1006/aima.2000.1914.  Google Scholar

[28]

Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Math. 207, Birkhäuser. 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[29]

Y. Long, Multiplicity and stability of closed geodesics on Finsler 2-spheres, J. Eur. Math. Soc., 8 (2006), 341-353.  doi: 10.4171/JEMS/56.  Google Scholar

[30]

Y. Long and H. Duan, Multiple closed geodesics on 3-spheres, Advances in Math., 221 (2009), 1757-1803.  doi: 10.1016/j.aim.2009.03.007.  Google Scholar

[31]

Y. Long and W. Wang, Multiple closed geodesics on Riemannian 3-spheres, Calc. Var. and PDEs, 30 (2007), 183-214.  doi: 10.1007/s00526-006-0083-4.  Google Scholar

[32]

A. Oancea, Morse theory, closed geodesics, and the homology of free loop spaces, With an appendix by Umberto Hryniewicz. IRMA Lect. Math. Theor. Phys., 24, Free loop spaces in geometry and topology, 67-109, Eur. Math. Soc., Zürich, 2015. arXiv: 1406.3107, 2014.  Google Scholar

[33]

H.-B. Rademacher, On the average indices of closed geodesics, J. Diff. Geom., 29 (1989), 65-83.  doi: 10.4310/jdg/1214442633.  Google Scholar

[34]

H.-B. Rademacher, Morse Theorie Und Geschlossene Geodatische, Bonner Math. Schr., 1992.  Google Scholar

[35]

H.-B. Rademacher, Existence of closed geodesics on positively curved Finsler manifolds, Ergodic Theory Dynam. Systems., 27 (2007), 957-969.  doi: 10.1017/S0143385706001064.  Google Scholar

[36]

H.-B. Rademacher, The second closed geodesic on Finsler spheres of dimension n>2, Trans. Amer. Math. Soc., 362 (2010), 1413-1421.  doi: 10.1090/S0002-9947-09-04745-X.  Google Scholar

[37]

Z. Shen, Lectures on Finsler Geometry, World Scientific. Singapore. 2001. doi: 10.1142/9789812811622.  Google Scholar

[38]

I. A. Taimanov, The type numbers of closed geodesics, Regul. Chaotic Dyn., 15 (2010), 84-100.  doi: 10.1134/S1560354710010053.  Google Scholar

[39]

I. A. Taimanov, The spaces of non-contractible closed curves in compact space forms, Mat. Sb., 207 (2016), 105-118.  doi: 10.4213/sm8708.  Google Scholar

[40]

M. Vigué-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, J. Diff. Geom., 11 (1976), 663-644.  doi: 10.4310/jdg/1214433729.  Google Scholar

[41]

W. Wang, Closed geodesics on positively curved Finsler spheres, Advances in Math., 218 (2008), 1566-1603.  doi: 10.1016/j.aim.2008.03.018.  Google Scholar

[42]

W. Wang, On a conjecture of Anosov, Advances in Math., 230 (2012), 1597-1617.  doi: 10.1016/j.aim.2012.04.006.  Google Scholar

[43]

C. Westerland, Dyer-Lashof operations in the string topology of spheres and projective spaces, Math. Z., 250 (2005), 711-727.  doi: 10.1007/s00209-005-0778-9.  Google Scholar

[44]

C. Westerland, String Homology of Spheres and Projective Spaces, Algebr. Geom. Topol., 7 (2007), 309-325.  doi: 10.2140/agt.2007.7.309.  Google Scholar

[45]

Y. Xiao and Y. Long, Topological structure of non-contractible loop space and closed geodesics on real projective spaces with odd dimensions, Advances in Math., 279 (2015), 159-200.  doi: 10.1016/j.aim.2015.03.013.  Google Scholar

[46]

W. Ziller, The free loop space of globally symmetric spaces, Invent. Math., 41 (1977), 1-22.  doi: 10.1007/BF01390161.  Google Scholar

[47]

W. Ziller, Geometry of the Katok examples, Ergod. Th. Dyn. Sys., 3 (1983), 135-157.  doi: 10.1017/S0143385700001851.  Google Scholar

show all references

References:
[1]

D. V. Anosov, Geodesics in Finsler geometry, Proc. I. C. M. (Vancouver, B. C. 1974), 2 (1975), 293-297; Montreal (Russian), Amer. Math. Soc. Transl., 109 (1977), 81-85.  Google Scholar

[2]

T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, GTM 41, 1990. doi: 10.1007/978-1-4612-0999-7.  Google Scholar

[3]

V. Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math., 4 (1993), 1-10.  doi: 10.1142/S0129167X93000029.  Google Scholar

[4]

V. Bangert and W. Klingenberg, Homology generated by iterated closed geodesics, Topology., 22 (1983), 379-388.  doi: 10.1016/0040-9383(83)90033-2.  Google Scholar

[5]

V. Bangert and Y. Long, The existence of two closed geodesics on every Finsler 2-sphere, Math. Ann., 346 (2010), 335-366. doi: 10.1007/s00208-009-0401-1.  Google Scholar

[6]

R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206.  doi: 10.1002/cpa.3160090204.  Google Scholar

[7]

K. Burns and S. Matveev, Open problems and questions about closed geodesics, arXiv: 1308.5417v2, 2014. Google Scholar

[8]

H. Duan and Y. Long, Multiple closed geodesics on bumpy Finsler n-spheres, J. Diff. Equa., 233 (2007), 221-240.  doi: 10.1016/j.jde.2006.10.002.  Google Scholar

[9]

H. Duan and Y. Long, The index growth and multiplicity of closed geodesics, J. Funct. Anal., 259 (2010), 1850-1913.  doi: 10.1016/j.jfa.2010.05.003.  Google Scholar

[10]

H. DuanY. Long and W. Wang, Two closed geodesics on compact simply-connected bumpy Finsler manifolds, J. Differ. Geom., 104 (2016), 275-289.  doi: 10.4310/jdg/1476367058.  Google Scholar

[11]

H. Duan, Y. Long and W. Wang, The enhanced common index jump theorem for symplectic paths and non-hyperbolic closed geodesics on Finsler manifolds, Calc. Var. and PDEs., 55 (2016), Art. 145, 28 pp. doi: 10.1007/s00526-016-1075-7.  Google Scholar

[12]

H. DuanY. Long and Y. Xiao, Two closed geodesics on $\mathbb{R}P$ with a bumpy Finsler metric, Calc. Var. and PDEs, 54 (2015), 2883-2894.  doi: 10.1007/s00526-015-0887-1.  Google Scholar

[13]

J. Franks, Geodesics on S2 and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418.  doi: 10.1007/BF02100612.  Google Scholar

[14]

D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology, 8 (1969), 361-369.  doi: 10.1016/0040-9383(69)90022-6.  Google Scholar

[15]

D. Gromoll and W. Meyer, Periodic geodesics on compact Riemannian manifolds, J. Diff. Geom., 3 (1969), 493-510.  doi: 10.4310/jdg/1214429070.  Google Scholar

[16]

N. Hingston, Equivariant Morse theory and closed geodesics, J. Diff. Geom., 19 (1984), 85-116.  doi: 10.4310/jdg/1214438424.  Google Scholar

[17]

N. Hingston, On the growth of the number of closed geodesics on the two-sphere, Inter. Math. Research Notices., 9 (1993), 253-262.  doi: 10.1155/S1073792893000285.  Google Scholar

[18]

N. Hingston and H.-B. Rademacher, Resonance for loop homology of spheres, J. Differ. Geom., 93 (2013), 133-174.  doi: 10.4310/jdg/1357141508.  Google Scholar

[19]

A. B. Katok, Ergodic properties of degenerate integrable Hamiltonian systems. Izv. Akad. Nauk. SSSR, 37 (1973), 539-576; [Russian]; Math. USSR-Izv., 7 (1973), 535-571.  Google Scholar

[20]

W. Klingenberg, Lectures on Closed Geodesics, Springer-Verlag, Berlin, heidelberg, New York, 1978.  Google Scholar

[21]

W. Klingenberg, Riemannian Geometry. De Gruyter, 2nd Rev ed. edition, 1995. doi: 10.1515/9783110905120.  Google Scholar

[22]

C. Liu, The relation of the morse index of closed geodesics with the maslov-type index of symplectic paths, Acta Math. Sinica, 21 (2005), 237-248.  doi: 10.1007/s10114-004-0406-3.  Google Scholar

[23]

C. Liu and Y. Long, Iterated index formulae for closed geodesics with applications, Science in China., 45 (2002), 9-28.   Google Scholar

[24]

H. Liu, The Fadell-Rabinowitz index and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^{n}$, J. Differential Equations, 262 (2017), 2540-2553.  doi: 10.1016/j.jde.2016.11.015.  Google Scholar

[25]

H. Liu and Y. Xiao, Resonance identity and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^{n}$, Advances in Math., 318 (2017), 158-190.  doi: 10.1016/j.aim.2017.07.024.  Google Scholar

[26]

Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.  doi: 10.2140/pjm.1999.187.113.  Google Scholar

[27]

Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Advances in Math., 154 (2000), 76-131.  doi: 10.1006/aima.2000.1914.  Google Scholar

[28]

Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Math. 207, Birkhäuser. 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[29]

Y. Long, Multiplicity and stability of closed geodesics on Finsler 2-spheres, J. Eur. Math. Soc., 8 (2006), 341-353.  doi: 10.4171/JEMS/56.  Google Scholar

[30]

Y. Long and H. Duan, Multiple closed geodesics on 3-spheres, Advances in Math., 221 (2009), 1757-1803.  doi: 10.1016/j.aim.2009.03.007.  Google Scholar

[31]

Y. Long and W. Wang, Multiple closed geodesics on Riemannian 3-spheres, Calc. Var. and PDEs, 30 (2007), 183-214.  doi: 10.1007/s00526-006-0083-4.  Google Scholar

[32]

A. Oancea, Morse theory, closed geodesics, and the homology of free loop spaces, With an appendix by Umberto Hryniewicz. IRMA Lect. Math. Theor. Phys., 24, Free loop spaces in geometry and topology, 67-109, Eur. Math. Soc., Zürich, 2015. arXiv: 1406.3107, 2014.  Google Scholar

[33]

H.-B. Rademacher, On the average indices of closed geodesics, J. Diff. Geom., 29 (1989), 65-83.  doi: 10.4310/jdg/1214442633.  Google Scholar

[34]

H.-B. Rademacher, Morse Theorie Und Geschlossene Geodatische, Bonner Math. Schr., 1992.  Google Scholar

[35]

H.-B. Rademacher, Existence of closed geodesics on positively curved Finsler manifolds, Ergodic Theory Dynam. Systems., 27 (2007), 957-969.  doi: 10.1017/S0143385706001064.  Google Scholar

[36]

H.-B. Rademacher, The second closed geodesic on Finsler spheres of dimension n>2, Trans. Amer. Math. Soc., 362 (2010), 1413-1421.  doi: 10.1090/S0002-9947-09-04745-X.  Google Scholar

[37]

Z. Shen, Lectures on Finsler Geometry, World Scientific. Singapore. 2001. doi: 10.1142/9789812811622.  Google Scholar

[38]

I. A. Taimanov, The type numbers of closed geodesics, Regul. Chaotic Dyn., 15 (2010), 84-100.  doi: 10.1134/S1560354710010053.  Google Scholar

[39]

I. A. Taimanov, The spaces of non-contractible closed curves in compact space forms, Mat. Sb., 207 (2016), 105-118.  doi: 10.4213/sm8708.  Google Scholar

[40]

M. Vigué-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, J. Diff. Geom., 11 (1976), 663-644.  doi: 10.4310/jdg/1214433729.  Google Scholar

[41]

W. Wang, Closed geodesics on positively curved Finsler spheres, Advances in Math., 218 (2008), 1566-1603.  doi: 10.1016/j.aim.2008.03.018.  Google Scholar

[42]

W. Wang, On a conjecture of Anosov, Advances in Math., 230 (2012), 1597-1617.  doi: 10.1016/j.aim.2012.04.006.  Google Scholar

[43]

C. Westerland, Dyer-Lashof operations in the string topology of spheres and projective spaces, Math. Z., 250 (2005), 711-727.  doi: 10.1007/s00209-005-0778-9.  Google Scholar

[44]

C. Westerland, String Homology of Spheres and Projective Spaces, Algebr. Geom. Topol., 7 (2007), 309-325.  doi: 10.2140/agt.2007.7.309.  Google Scholar

[45]

Y. Xiao and Y. Long, Topological structure of non-contractible loop space and closed geodesics on real projective spaces with odd dimensions, Advances in Math., 279 (2015), 159-200.  doi: 10.1016/j.aim.2015.03.013.  Google Scholar

[46]

W. Ziller, The free loop space of globally symmetric spaces, Invent. Math., 41 (1977), 1-22.  doi: 10.1007/BF01390161.  Google Scholar

[47]

W. Ziller, Geometry of the Katok examples, Ergod. Th. Dyn. Sys., 3 (1983), 135-157.  doi: 10.1017/S0143385700001851.  Google Scholar

[1]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[5]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[6]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[9]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[10]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[11]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[12]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[13]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[14]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[15]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[16]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[17]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[18]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[19]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[20]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (125)
  • HTML views (142)
  • Cited by (3)

Other articles
by authors

[Back to Top]