In this paper we consider the equation $(-Δ)^k\, u = λ f(x, u)+μ g(x, u)$ with Navier boundary conditions, in a bounded and smooth domain. The main interest is when the nonlinearity is nonnegative but admits a zero and $f, g$ are, respectively, identically zero above and below the zero. We prove the existence of multiple positive solutions when the parameters lie in a region of the form $λ>\overline λ$ and $0 < μ< \overlineμ(λ)$, then we provide further conditions under which, respectively, the bound $\overlineμ(λ)$ is either necessary, or can be removed.
Citation: |
A. Ambrosetti
, H. Brezis
and G. Cerami
, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994)
, 519-543.
doi: 10.1006/jfan.1994.1078.![]() ![]() ![]() |
|
T. Bartsch
and Z. Liu
, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Commun. Contemp. Math., 6 (2004)
, 245-258.
doi: 10.1142/S0219199704001306.![]() ![]() ![]() |
|
F. Bernis
, J. García Azorero
and I. Peral
, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 1 (1996)
, 219-240.
![]() ![]() |
|
H. Brezis
and L. Nirenberg
, H1 versus C1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993)
, 465-472.
![]() ![]() |
|
D. G. de Figueiredo
, J.-P. Gossez
and P. Ubilla
, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003)
, 452-467.
doi: 10.1016/S0022-1236(02)00060-5.![]() ![]() ![]() |
|
D. G. de Figueiredo
, J.-P. Gossez
and P. Ubilla
, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. (JEMS), 8 (2006)
, 269-286.
doi: 10.4171/JEMS/52.![]() ![]() ![]() |
|
D. G. de Figueiredo
, P.-L. Lions
and R. D. Nussbaum
, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9), 61 (1982)
, 41-63.
![]() ![]() |
|
F. O. de Paiva
and E. Massa
, Multiple solutions for some elliptic equations with a nonlinearity concave at the origin, Nonlinear Anal., 66 (2007)
, 2940-2946.
doi: 10.1016/j.na.2006.04.015.![]() ![]() ![]() |
|
J. Díaz
and J. Saá
, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987)
, 521-524.
![]() ![]() |
|
F. Ebobisse
and M. Ahmedou
, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent, Nonlinear Anal., 52 (2003)
, 1535-1552.
doi: 10.1016/S0362-546X(02)00273-0.![]() ![]() ![]() |
|
D. E. Edmunds
, D. Fortunato
and E. Jannelli
, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990)
, 269-289.
doi: 10.1007/BF00381236.![]() ![]() ![]() |
|
J. García-Melián
and L. Iturriaga
, Multiplicity of solutions for some semilinear problems involving nonlinearities with zeros, Israel J. Math., 210 (2015)
, 233-244.
doi: 10.1007/s11856-015-1251-z.![]() ![]() ![]() |
|
J. García-Melián
and J. Sabina de Lis
, Stationary profiles of degenerate problems when a parameter is large, Differential Integral Equations, 13 (2000)
, 1201-1232.
![]() ![]() |
|
F. Gazzola
, H.-C. Grunau
and M. Squassina
, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003)
, 117-143.
doi: 10.1007/s00526-002-0182-9.![]() ![]() ![]() |
|
F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, vol. 1991 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, Positivity preserving and nonlinear higher order elliptic equations in bounded domains.
doi: 10.1007/978-3-642-12245-3.![]() ![]() ![]() |
|
M. Guedda
and L. Véron
, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989)
, 879-902.
doi: 10.1016/0362-546X(89)90020-5.![]() ![]() ![]() |
|
P. Hess
, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Differential Equations, 6 (1981)
, 951-961.
doi: 10.1080/03605308108820200.![]() ![]() ![]() |
|
J. Hulshof
and R. van der Vorst
, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993)
, 32-58.
doi: 10.1006/jfan.1993.1062.![]() ![]() ![]() |
|
L. Iturriaga
, S. Lorca
and E. Massa
, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010)
, 763-771.
doi: 10.1016/j.anihpc.2009.11.003.![]() ![]() ![]() |
|
L. Iturriaga
, S. Lorca
and E. Massa
, Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros, Differential Integral Equations, 30 (2017)
, 145-159.
![]() ![]() |
|
L. Iturriaga
, E. Massa
, J. Sánchez
and P. Ubilla
, Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros, J. Differential Equations, 248 (2010)
, 309-327.
doi: 10.1016/j.jde.2009.08.008.![]() ![]() ![]() |
|
L. Iturriaga
, E. Massa
, J. Sanchez
and P. Ubilla
, Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros, Math. Nach., 287 (2014)
, 1131-1141.
doi: 10.1002/mana.201100285.![]() ![]() ![]() |
|
A. C. Lazer
and P. J. McKenna
, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990)
, 537-578.
doi: 10.1137/1032120.![]() ![]() ![]() |
|
A. C. Lazer
and P. J. McKenna
, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181 (1994)
, 648-655.
doi: 10.1006/jmaa.1994.1049.![]() ![]() ![]() |
|
P.-L. Lions
, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982)
, 441-467.
doi: 10.1137/1024101.![]() ![]() ![]() |
|
Z. Liu
, Positive solutions of superlinear elliptic equations, J. Funct. Anal., 167 (1999)
, 370-398.
doi: 10.1006/jfan.1999.3446.![]() ![]() ![]() |
|
Z. Liu
, Positive solutions of a class of nonlinear elliptic eigenvalue problems, Math. Z., 242 (2002)
, 663-686.
doi: 10.1007/s002090100373.![]() ![]() ![]() |
|
A. M. Micheletti
and A. Pistoia
, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Anal., 31 (1998)
, 895-908.
doi: 10.1016/S0362-546X(97)00446-X.![]() ![]() ![]() |
|
A. M. Micheletti
and A. Pistoia
, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Anal., 34 (1998)
, 509-523.
doi: 10.1016/S0362-546X(97)00596-8.![]() ![]() ![]() |
|
E. S. Noussair
, C. A. Swanson
and J. Yang
, Critical semilinear biharmonic equations in RN, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992)
, 139-148.
doi: 10.1017/S0308210500014189.![]() ![]() ![]() |
|
L. A. Peletier
and R. van der Vorst
, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential Integral Equations, 5 (1992)
, 747-767.
![]() ![]() |
|
P. Pucci
and J. Serrin
, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9), 69 (1990)
, 55-83.
![]() ![]() |
|
S. Takeuchi
, Coincidence sets in semilinear elliptic problems of logistic type, Differential Integral Equations, 20 (2007)
, 1075-1080.
![]() ![]() |
|
S. Takeuchi
, Partial flat core properties associated to the p-Laplace operator, Discrete Contin. Dyn. Syst., (2007)
, 965-973.
![]() ![]() |
|
G. Tarantello
, A note on a semilinear elliptic problem, Differential Integral Equations, 5 (1992)
, 561-565.
![]() ![]() |
|
G. Xu
and J. Zhang
, Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity, J. Math. Anal. Appl., 281 (2003)
, 633-640.
doi: 10.1016/S0022-247X(03)00170-7.![]() ![]() ![]() |
|
J. Zhang
and Z. Wei
, Multiple solutions for a class of biharmonic equations with a nonlinearity concave at the origin, J. Math. Anal. Appl., 383 (2011)
, 291-306.
doi: 10.1016/j.jmaa.2011.05.030.![]() ![]() ![]() |
|
Y. Zhang
, Positive solutions of semilinear biharmonic equations with critical Sobolev exponents, Nonlinear Anal., 75 (2012)
, 55-67.
doi: 10.1016/j.na.2011.07.065.![]() ![]() ![]() |