• Previous Article
    Global weak solution and boundedness in a three-dimensional competing chemotaxis
  • DCDS Home
  • This Issue
  • Next Article
    Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros
August  2018, 38(8): 3851-3873. doi: 10.3934/dcds.2018167

Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan

*Corresponding author

1Present address: Centre for Mathematical Sciences, Lund University, P.O. Box 118, SE-22100 Lund, Sweden

Received  September 2017 Revised  February 2018 Published  May 2018

Bohr-Sommerfeld type quantization conditions of semiclassical eigenvalues for the non-selfadjoint Zakharov-Shabat operator on the unit circle are derived using an exact WKB method. The conditions are given in terms of the action associated with the unit circle or the action associated with turning points following the absence or presence of real turning points.

Citation: Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces , vol. 140 of Pure and Applied Mathematics, Elsevier/Academic Press, 2003.  Google Scholar

[2]

N. Dencker, The pseudospectrum of systems of semiclassical operators, Analysis & PDE, 1 (2008), 323-373.  doi: 10.2140/apde.2008.1.323.  Google Scholar

[3]

S. Dyatlov and M. Zworski, Stochastic stability of Pollicott-Ruelle resonances, Nonlinearity, 28 (2015), 3511-3533.  doi: 10.1088/0951-7715/28/10/3511.  Google Scholar

[4]

J. Ecalle, Cinq Applications des Fonctions Résurgentes , Prépublications mathématiques d'Orsay, Département de mathématique, 1984. Google Scholar

[5]

M.A. Evgrafov and M.V. Fedoryuk, {Asymptotic behaviour as $λ\to∞$ of the solution of the equation $w''(z)-p (z, λ) w (z) = 0$ in the complex $z$-plane, Russian Mathematical Surveys, 21 (1966), 3-50.   Google Scholar

[6]

S. FujiiéC. Lasser and L. Nédélec, Semiclassical resonances for a two-level Schrödinger operator with a conical intersection, Asymptotic Analysis, 65 (2009), 17-58.   Google Scholar

[7]

S. Fujiié and T. Ramond, Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré Phys. Théor., 69 (1998), 31-82.   Google Scholar

[8]

S.V. Galtsev and A.I. Shafarevich, Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients, Theoretical and Mathematical Physics, 148 (2006), 1049-1066.  doi: 10.1007/s11232-006-0100-y.  Google Scholar

[9]

C. Gérard and A. Grigis, Precise estimates of tunneling and eigenvalues near a potential barrier, Journal of Differential Equations, 72 (1988), 149-177.  doi: 10.1016/0022-0396(88)90153-2.  Google Scholar

[10]

B. Grébert and T. Kappeler, Estimates on periodic and Dirichlet eigenvalues for the Zakharov-Shabat system, Asymptotic Analysis, 25 (2001), 201-237.   Google Scholar

[11]

K. Hirota, Real eigenvalues of a non-self-adjoint perturbation of the self-adjoint Zakharov-Shabat operator , Journal of Mathematical Physics, 58 (2017), 102108, 14pp. doi: 10.1063/1.4999668.  Google Scholar

[12]

T. Kato, Perturbation Theory for Linear Operators, vol. 132 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer Verlag, 1966.  Google Scholar

[13]

S. Kmvissias, K. McLaughlin and P. Miller, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM-154), 154, Princeton University Press, 2003. doi: 10.1515/9781400837182.  Google Scholar

[14]

E.L. Korotyaev and P. Kargaev, Estimates for periodic Zakharov-Shabat operators, Journal of Differential Equations, 249 (2010), 76-93.  doi: 10.1016/j.jde.2010.02.016.  Google Scholar

[15]

T. Ramond, Semiclassical study of quantum scattering on the line, Communications in Mathematical Physics, 177 (1996), 221-254.  doi: 10.1007/BF02102437.  Google Scholar

[16]

A.B. Shabat and V.F. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Journal of Experimental and Theoretical Physics, 34 (1972), 62-69.   Google Scholar

[17]

M. Zworski, Semiclassical Analysis, vol. 138 of Graduate Studies in Mathematics, American Mathematical Society, 2012. doi: 10. 1090/gsm/138.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces , vol. 140 of Pure and Applied Mathematics, Elsevier/Academic Press, 2003.  Google Scholar

[2]

N. Dencker, The pseudospectrum of systems of semiclassical operators, Analysis & PDE, 1 (2008), 323-373.  doi: 10.2140/apde.2008.1.323.  Google Scholar

[3]

S. Dyatlov and M. Zworski, Stochastic stability of Pollicott-Ruelle resonances, Nonlinearity, 28 (2015), 3511-3533.  doi: 10.1088/0951-7715/28/10/3511.  Google Scholar

[4]

J. Ecalle, Cinq Applications des Fonctions Résurgentes , Prépublications mathématiques d'Orsay, Département de mathématique, 1984. Google Scholar

[5]

M.A. Evgrafov and M.V. Fedoryuk, {Asymptotic behaviour as $λ\to∞$ of the solution of the equation $w''(z)-p (z, λ) w (z) = 0$ in the complex $z$-plane, Russian Mathematical Surveys, 21 (1966), 3-50.   Google Scholar

[6]

S. FujiiéC. Lasser and L. Nédélec, Semiclassical resonances for a two-level Schrödinger operator with a conical intersection, Asymptotic Analysis, 65 (2009), 17-58.   Google Scholar

[7]

S. Fujiié and T. Ramond, Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré Phys. Théor., 69 (1998), 31-82.   Google Scholar

[8]

S.V. Galtsev and A.I. Shafarevich, Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients, Theoretical and Mathematical Physics, 148 (2006), 1049-1066.  doi: 10.1007/s11232-006-0100-y.  Google Scholar

[9]

C. Gérard and A. Grigis, Precise estimates of tunneling and eigenvalues near a potential barrier, Journal of Differential Equations, 72 (1988), 149-177.  doi: 10.1016/0022-0396(88)90153-2.  Google Scholar

[10]

B. Grébert and T. Kappeler, Estimates on periodic and Dirichlet eigenvalues for the Zakharov-Shabat system, Asymptotic Analysis, 25 (2001), 201-237.   Google Scholar

[11]

K. Hirota, Real eigenvalues of a non-self-adjoint perturbation of the self-adjoint Zakharov-Shabat operator , Journal of Mathematical Physics, 58 (2017), 102108, 14pp. doi: 10.1063/1.4999668.  Google Scholar

[12]

T. Kato, Perturbation Theory for Linear Operators, vol. 132 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer Verlag, 1966.  Google Scholar

[13]

S. Kmvissias, K. McLaughlin and P. Miller, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM-154), 154, Princeton University Press, 2003. doi: 10.1515/9781400837182.  Google Scholar

[14]

E.L. Korotyaev and P. Kargaev, Estimates for periodic Zakharov-Shabat operators, Journal of Differential Equations, 249 (2010), 76-93.  doi: 10.1016/j.jde.2010.02.016.  Google Scholar

[15]

T. Ramond, Semiclassical study of quantum scattering on the line, Communications in Mathematical Physics, 177 (1996), 221-254.  doi: 10.1007/BF02102437.  Google Scholar

[16]

A.B. Shabat and V.F. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Journal of Experimental and Theoretical Physics, 34 (1972), 62-69.   Google Scholar

[17]

M. Zworski, Semiclassical Analysis, vol. 138 of Graduate Studies in Mathematics, American Mathematical Society, 2012. doi: 10. 1090/gsm/138.  Google Scholar

Figure 1.  The configuration of Stokes lines for V (x) = cos x, with legends describing the size of Re z(x; 0, λ) for λ = 1 (left panel) and λ = 1 + 10−1i (right panel)
Figure 2.  The configuration of Stokes lines and the behavior of Re z(x; x1; λ) for V (x) = cos x, where λ = and x1 satisfies Re x1 > 0, cos x1 = µ (the turning point in the middle). The top panel describes the situation for µ = 1/2 and the bottom panel for µ = 1/2 + i/10. Branch cuts are located along (the curved edges of) the white regions.
Figure 3.  The location of amplitude base points relative the neighboring turning points $x_k(\mu)$ over a partial period for generic $V$ and $\lambda = i\mu\in B_\varepsilon(\lambda_0)$. Branch cuts are indicated by dashed lines.
[1]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[2]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[5]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[6]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[7]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[8]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[9]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[10]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[11]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[12]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[13]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[14]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[15]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[16]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[17]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[18]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[19]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[20]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (71)
  • HTML views (139)
  • Cited by (1)

Other articles
by authors

[Back to Top]