This paper deals with the prescribed mean curvature equations
$ - {\text{div}}\left( {\frac{{\nabla u}}{{\sqrt {1 \pm |\nabla u{|^2}} }}} \right) = g(u){\text{ }}\;\;\;\;{\text{in }}{\mathbb{R}^N},$
both in the Euclidean case, with the sign "+", and in the Lorentz-Minkowski case, with the sign "-", for N ≥ 1 under the assumption g'(0)>0. We show the existence of oscillating solutions, namely with an unbounded sequence of zeros. Moreover these solutions are periodic, if N = 1, while they are radial symmetric and decay to zero at infinity with their derivatives, if N≥ 2.
Citation: |
A. Azzollini
, Ground state solution for a problem with mean curvature operator in Minkowski space, J. Funct. Anal., 266 (2014)
, 2086-2095.
doi: 10.1016/j.jfa.2013.10.002.![]() ![]() ![]() |
|
A. Azzollini
, On a prescribed mean curvature equation in Lorentz-Minkowski space, Journal de Mathématiques Pures et Appliquées, 106 (2016)
, 1122-1140.
doi: 10.1016/j.matpur.2016.04.003.![]() ![]() ![]() |
|
A. Azzollini
, P. d'Avenia
and A. Pomponio
, Quasilinear elliptic equations in $\mathbb{R}^N$ via variational methods and Orlicz-Sobolev embeddings, Calc. Var. Partial Differential Equations, 49 (2014)
, 197-213.
doi: 10.1007/s00526-012-0578-0.![]() ![]() ![]() |
|
H. Berestycki
and P. L. Lions
, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983)
, 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
|
H. Berestycki
, P. L. Lions
and L. A. Peletier
, An ODE approach to the existence of positive solutions for semilinear problems in $\mathbb{R}^N$, Indiana Univ. Math. J., 30 (1981)
, 141-157.
doi: 10.1512/iumj.1981.30.30012.![]() ![]() ![]() |
|
D. Bonheure
, A. Derlet
and C. De Coster
, Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space, Rend. Istit. Mat. Univ. Trieste, 44 (2012)
, 259-284.
![]() ![]() |
|
D. Bonheure
, P. d'Avenia
and A. Pomponio
, On the electrostatic Born-Infeld equation with extended charges, Comm. Math. Phys., 346 (2016)
, 877-906.
doi: 10.1007/s00220-016-2586-y.![]() ![]() ![]() |
|
M. Born and L. Infeld, Foundations of the new field theory,
Nature, 132 (1933), 1004.
![]() |
|
M. Born
and L. Infeld
, Foundations of the new field theory, Proc. Roy. Soc. London Ser. A, 144 (1934)
, 425-451.
![]() |
|
M. Conti
and F. Gazzola
, Existence of ground states and free-boundary problems for the prescribed mean-curvature equation, Adv. Differential Equations, 7 (2002)
, 667-694.
![]() ![]() |
|
C. Corsato, Mathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator, Università degli Studi di Trieste, Trieste, 2015.
![]() |
|
M. del Pino
and I. Guerra
, Ground states of a prescribed mean curvature equation, J. Differential Equations, 241 (2007)
, 112-129.
doi: 10.1016/j.jde.2007.06.010.![]() ![]() ![]() |
|
G. Evequoz
, A dual approach in Orlicz spaces for the nonlinear Helmholtz equation, Z. Angew. Math. Phys., 66 (2015)
, 2995-3015.
doi: 10.1007/s00033-015-0572-4.![]() ![]() ![]() |
|
G. Evequoz
and T. Weth
, Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation, Journal of Fixed Point Theory and Applications, 19 (2017)
, 475-502.
doi: 10.1007/s11784-016-0362-4.![]() ![]() ![]() |
|
G. Evequoz
and T. Weth
, Real solutions to the nonlinear Helmholtz equation with local nonlinearity, Arch. Ration. Mech. Anal., 211 (2014)
, 359-388.
doi: 10.1007/s00205-013-0664-2.![]() ![]() ![]() |
|
G. Evequoz
and T. Weth
, Dual variational methods and nonvanishing for the nonlinear Helmholtz equation, Adv. Math., 280 (2015)
, 690-728.
doi: 10.1016/j.aim.2015.04.017.![]() ![]() ![]() |
|
D. Fortunato
, L. Orsina
and L. Pisani
, Born-Infeld type equations for electrostatic fields, J. Math. Phys., 43 (2002)
, 5698-5706.
doi: 10.1063/1.1508433.![]() ![]() ![]() |
|
B. Franchi
, E. Lanconelli
and J. Serrin
, Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$, Adv. Math., 118 (1996)
, 177-243.
doi: 10.1006/aima.1996.0021.![]() ![]() ![]() |
|
N. Fukagai
, M. Ito
and K. Narukawa
, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\mathbb{R}N$, Funkcial. Ekvac., 49 (2006)
, 235-267.
doi: 10.1619/fesi.49.235.![]() ![]() ![]() |
|
C. Gui
and F. Zhou
, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations, Methods Appl. Anal., 15 (2008)
, 285-295.
doi: 10.4310/MAA.2008.v15.n3.a3.![]() ![]() ![]() |
|
T. Kusano
and C. A. Swanson
, Radial entire solutions of a class of quasilinear elliptic equations, J. Differential Equations, 83 (1990)
, 379-399.
doi: 10.1016/0022-0396(90)90064-V.![]() ![]() ![]() |
|
R. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions for nonlinear Helmholtz Equations Z. Angew. Math. Phys., 68 (2017), Art. 121, 19 pp.
doi: 10.1007/s00033-017-0859-8.![]() ![]() ![]() |
|
W.-M. Ni
and J. Serrin
, Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo, 5 (1985)
, 171-185.
![]() ![]() |
|
W.-M. Ni
and J. Serrin
, Existence and Non-existence theorems for quasi-linear partial differential equations, The anomalous case, Accad. Naz. Lincei, Convegni Dei Lincei, 77 (1986)
, 231-257.
![]() |
|
L. A. Peletier
and J. Serrin
, Ground states for the prescribed mean curvature equation, Proc. Amer. Math. Soc., 100 (1987)
, 694-700.
doi: 10.1090/S0002-9939-1987-0894440-8.![]() ![]() ![]() |
|
A. Pomponio and T. Watanabe, Some quasilinear elliptic equations involving multiple $p$-Laplacians, to appear on Indiana Univ. Math. J.
![]() |
|
W. A. Strauss
, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977)
, 149-162.
doi: 10.1007/BF01626517.![]() ![]() ![]() |