In this paper we mainly classify the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space $\mathbb{R}_+^{n}$, and also present some remarks on the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the whole space $\mathbb{R}^{n}$. Our main techniques are Kelvin transformation and the method of moving spheres in integral forms.
Citation: |
W. Beckner
, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993)
, 213-242.
doi: 10.2307/2946638.![]() ![]() ![]() |
|
T. P. Branson
, L. Fontana
and C. Morpurgo
, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math., 177 (2013)
, 1-52.
doi: 10.4007/annals.2013.177.1.1.![]() ![]() ![]() |
|
E. Carlen
and M. Loss
, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb{S}^n$, Geom. Funct. Anal., 2 (1992)
, 90-104.
doi: 10.1007/BF01895706.![]() ![]() ![]() |
|
W. Chen
and C. Li
, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991)
, 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
|
K. S. Chou
and T. Y. H. Wan
, Asymptotic radial symmetry for solutions of $Δ u + e^u= 0$ in a punctured disc, Pacific J. Math., 163 (1994)
, 269-276.
doi: 10.2140/pjm.1994.163.269.![]() ![]() ![]() |
|
J. Dou
and M. Zhu
, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2015)
, 651-687.
doi: 10.1093/imrn/rnt213.![]() ![]() ![]() |
|
Y. Y. Li
, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004)
, 153-180.
![]() ![]() |
|
Y. Y. Li
and L. Zhang
, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003)
, 27-87.
doi: 10.1007/BF02786551.![]() ![]() ![]() |
|
Y. Y. Li
and M. Zhu
, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995)
, 383-417.
doi: 10.1215/S0012-7094-95-08016-8.![]() ![]() ![]() |
|
C. S. Lin
, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998)
, 206-231.
doi: 10.1007/s000140050052.![]() ![]() ![]() |
|
C. Morpurgo
, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on $\mathbb{S}^n$, Geom. Funct. Anal., 6 (1996)
, 146-171.
doi: 10.1007/BF02246771.![]() ![]() ![]() |
|
Q. A. Ngô
and V. H. Nguyen
, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}_+^n$, Int. Math. Res. Not. IMRN, 2017 (2017)
, 6187-6230.
doi: 10.1093/imrn/rnw108.![]() ![]() ![]() |
|
W. M. Ni
, On the elliptic equation $Δ u + Ke^\frac{n+2}{n-2} = 0$, its generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982)
, 493-529.
doi: 10.1512/iumj.1982.31.31040.![]() ![]() ![]() |
|
E. Onofri
, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982)
, 321-326.
doi: 10.1007/BF01212171.![]() ![]() ![]() |
|
J. Wei
and X. Xu
, Prescribing $Q$-curvature problem on $\mathbb{S}^n$, J. Funct. Anal., 257 (2009)
, 1995-2023.
doi: 10.1016/j.jfa.2009.06.024.![]() ![]() ![]() |
|
J. Wei
and X. Xu
, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999)
, 207-228.
doi: 10.1007/s002080050258.![]() ![]() ![]() |
|
X. Xu
, Uniqueness and non-existence theorems for conformally invariant equations, J. Funct. Anal., 222 (2005)
, 1-28.
doi: 10.1016/j.jfa.2004.07.003.![]() ![]() ![]() |