
-
Previous Article
Continuity of spectral radius over hyperbolic systems
- DCDS Home
- This Issue
-
Next Article
Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space
Periodic linear motions with multiple collisions in a forced Kepler type problem
1. | Fac. Ciências da Univ. Lisboa e Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Campo Grande, Edifício C6, piso 2, P-1749-016 Lisboa, Portugal |
2. | Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Campo Grande, Edifício C6, piso 2, P-1749-016 Lisboa, Portugal |
In [
References:
[1] |
P. Amster, J. Haddad, R. Ortega and A. J. Ureña,
Periodic motions in forced problems of Kepler type, NODEA, 18 (2011), 649-657.
doi: 10.1007/s00030-011-0111-8. |
[2] |
F. Dalbono and C. Rebelo,
Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, Turin Fortnight Lectures on Nonlinear Analysis, Rend. Sem. Mat. Univ. Politec. Torino, 60 (2002), 233-263.
|
[3] |
J. Franks,
Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988), 139-151.
doi: 10.2307/1971464. |
[4] | |
[5] |
P. Le Calvez and J. Wang,
Some remarks on the Poincaré-Birkhoff theorem, Proc. of the AMS, 138 (2010), 703-715.
doi: 10.1090/S0002-9939-09-10105-3. |
[6] |
S. Marò,
Periodic solution of a forced relativistic pendulum via twist dynamics, Topological Methods in Nonlinear Analysis, 42 (2013), 51-75.
|
[7] |
R. Ortega,
Linear motions in a periodically forced Kepler problem, Portugaliae Mathematica, 68 (2011), 149-176.
doi: 10.4171/PM/1885. |
[8] |
A. Simões, Bouncing solutions in a generalized Kepler problem, Master Thesis, University of Lisbon, 2016. |
[9] |
H. L. Smith and P. Waltman,
The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043. |
[10] |
H. J. Sperling,
The collision singularity in a perturbed two-body problem, Celestial Mechanics, 1 (1969/1970), 213-221.
doi: 10.1007/BF01228841. |
[11] |
L. Zhao,
Some collision solutions of the rectilinear periodically forced Kepler problem, Adv. Nonlinear Stud., 16 (2016), 45-49.
doi: 10.1515/ans-2015-5021. |
show all references
References:
[1] |
P. Amster, J. Haddad, R. Ortega and A. J. Ureña,
Periodic motions in forced problems of Kepler type, NODEA, 18 (2011), 649-657.
doi: 10.1007/s00030-011-0111-8. |
[2] |
F. Dalbono and C. Rebelo,
Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, Turin Fortnight Lectures on Nonlinear Analysis, Rend. Sem. Mat. Univ. Politec. Torino, 60 (2002), 233-263.
|
[3] |
J. Franks,
Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988), 139-151.
doi: 10.2307/1971464. |
[4] | |
[5] |
P. Le Calvez and J. Wang,
Some remarks on the Poincaré-Birkhoff theorem, Proc. of the AMS, 138 (2010), 703-715.
doi: 10.1090/S0002-9939-09-10105-3. |
[6] |
S. Marò,
Periodic solution of a forced relativistic pendulum via twist dynamics, Topological Methods in Nonlinear Analysis, 42 (2013), 51-75.
|
[7] |
R. Ortega,
Linear motions in a periodically forced Kepler problem, Portugaliae Mathematica, 68 (2011), 149-176.
doi: 10.4171/PM/1885. |
[8] |
A. Simões, Bouncing solutions in a generalized Kepler problem, Master Thesis, University of Lisbon, 2016. |
[9] |
H. L. Smith and P. Waltman,
The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043. |
[10] |
H. J. Sperling,
The collision singularity in a perturbed two-body problem, Celestial Mechanics, 1 (1969/1970), 213-221.
doi: 10.1007/BF01228841. |
[11] |
L. Zhao,
Some collision solutions of the rectilinear periodically forced Kepler problem, Adv. Nonlinear Stud., 16 (2016), 45-49.
doi: 10.1515/ans-2015-5021. |


[1] |
Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin. On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2393-2419. doi: 10.3934/dcds.2020119 |
[2] |
Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15 |
[3] |
Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259 |
[4] |
Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1495-1533. doi: 10.3934/dcds.2021162 |
[5] |
William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028 |
[6] |
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure and Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541 |
[7] |
D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495 |
[8] |
Luca Biasco, Laura Di Gregorio. Periodic solutions of Birkhoff-Lewis type for the nonlinear wave equation. Conference Publications, 2007, 2007 (Special) : 102-109. doi: 10.3934/proc.2007.2007.102 |
[9] |
Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009 |
[10] |
Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144 |
[11] |
Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 |
[12] |
Paolo Perfetti. An infinite-dimensional extension of a Poincaré's result concerning the continuation of periodic orbits. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 401-418. doi: 10.3934/dcds.1997.3.401 |
[13] |
Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069 |
[14] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
[15] |
Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1 |
[16] |
Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022 |
[17] |
Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 |
[18] |
Serge Tabachnikov. Birkhoff billiards are insecure. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035 |
[19] |
Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623 |
[20] |
Zoltán Buczolich, Balázs Maga, Ryo Moore. Generic Birkhoff spectra. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6649-6679. doi: 10.3934/dcds.2020131 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]