-
Previous Article
Automatic sequences as good weights for ergodic theorems
- DCDS Home
- This Issue
-
Next Article
Large time behavior of solutions of the heat equation with inverse square potential
The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, I-20125 Milano, Italy |
$\int_{Ω} [L(\nabla v(x))+g(x, v(x))]dx~~~ \hbox {on}~~~ u^0+W^{1, p}_0(Ω)$ |
$\Omega\subset \mathbb R^N$ |
$L(ξ) = l(|ξ|) = \frac{1}{p}|ξ|^p$ |
$ u^0∈ W^{1, p}(Ω)$ |
${\rm div }(|\nabla u|^ {p-2}\nabla u) = f.$ |
$3≤ p < 4$ |
$g$ |
$ u^*$ |
$\nabla u^*∈ W^{s, 2}_{loc}(\Omega)$ |
$0 < s < 4-p$ |
$p = 3$ |
$u^*$ |
$\nabla u^*∈ W^{s, 2}_{loc}(\Omega)$ |
$s < 1$ |
$N$ |
$N = 1$ |
$p = 3$ |
$u$ |
$\nabla u^*$ |
$W^{1, 2}_{loc}(\Omega)$ |
References:
[1] |
B. Avelin, T. Kuusi and G. Mingione,
Nonlinear Calderon-Zygmund theory in the limiting case, Arch. Rat. Mech. Anal., 227 (2018), 663-714.
doi: 10.1007/s00205-017-1171-7. |
[2] |
A. Cellina,
The regularity of solutions to some variational problems, including the p-Laplace equation for 2 ≤ p < 3, ESAIM: COCV, 23 (2017), 1543-1553.
doi: 10.1051/cocv/2016064. |
[3] |
A. Cianchi and V. G. Maz'ya,
Second-order two-sided estimates in nonlinear elliptic problems, Archive for Rational Mechanics and Analysis, (2017), 1-31.
doi: 10.1007/s00205-018-1223-7. |
[4] |
F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, Heidelberg, 2012.
doi: 10.1007/978-1-4471-2807-6. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
L. Esposito and G. Mingione,
Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complutense, 11 (1998), 203-219.
|
[7] |
E. Giusti, Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994. |
[8] |
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian. Academic Press, New York-London, 1968. |
[9] |
J. J. Manfredi and A. Weitsman,
On the Fatou Theorem for p-harmonic functions, Comm. Partial Differential Equations, 13 (1988), 651-668.
doi: 10.1080/03605308808820556. |
[10] |
W. P. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989.
doi: 10.1007/978-1-4612-1015-3. |
show all references
References:
[1] |
B. Avelin, T. Kuusi and G. Mingione,
Nonlinear Calderon-Zygmund theory in the limiting case, Arch. Rat. Mech. Anal., 227 (2018), 663-714.
doi: 10.1007/s00205-017-1171-7. |
[2] |
A. Cellina,
The regularity of solutions to some variational problems, including the p-Laplace equation for 2 ≤ p < 3, ESAIM: COCV, 23 (2017), 1543-1553.
doi: 10.1051/cocv/2016064. |
[3] |
A. Cianchi and V. G. Maz'ya,
Second-order two-sided estimates in nonlinear elliptic problems, Archive for Rational Mechanics and Analysis, (2017), 1-31.
doi: 10.1007/s00205-018-1223-7. |
[4] |
F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, Heidelberg, 2012.
doi: 10.1007/978-1-4471-2807-6. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
L. Esposito and G. Mingione,
Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complutense, 11 (1998), 203-219.
|
[7] |
E. Giusti, Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994. |
[8] |
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian. Academic Press, New York-London, 1968. |
[9] |
J. J. Manfredi and A. Weitsman,
On the Fatou Theorem for p-harmonic functions, Comm. Partial Differential Equations, 13 (1988), 651-668.
doi: 10.1080/03605308808820556. |
[10] |
W. P. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989.
doi: 10.1007/978-1-4612-1015-3. |
[1] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[2] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[3] |
Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 |
[4] |
John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533 |
[5] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[6] |
Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020 |
[7] |
Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130 |
[8] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control and Related Fields, 2021, 11 (3) : 653-679. doi: 10.3934/mcrf.2021017 |
[9] |
Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 |
[10] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[11] |
CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure and Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004 |
[12] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 |
[13] |
Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 |
[14] |
Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 |
[15] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[16] |
Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469 |
[17] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[18] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[19] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191 |
[20] |
Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]