August  2018, 38(8): 4231-4242. doi: 10.3934/dcds.2018184

Second order regularity for degenerate nonlinear elliptic equations

1. 

Dipartimento di Matematica e Informatica, UNICAL, Ponte Pietro Bucci 31B, 87036 Arcavacata di Rende, Cosenza, Italy

2. 

Dipartimento di Fisica, UNICAL, Ponte Pietro Bucci 33B, 87036 Arcavacata di Rende, Cosenza, Italy

Received  March 2018 Revised  April 2018 Published  May 2018

We investigate the second order regularity of solutions to degenerate nonlinear elliptic equations.

Citation: Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184
References:
[1]

A. CaninoP. Le and B. Sciunzi, Local $W_{loc}^{2, m\left(\cdot \right)}$ regularity for p(·)-Laplace equations, Manuscripta Mathematica, 140 (2013), 481-496.  doi: 10.1007/s00229-012-0549-y.

[2]

L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations, 206 (2004), 483-515.  doi: 10.1016/j.jde.2004.05.012.

[3]

E. Di Benedetto, $C^{1+α}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.

[4]

T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269.  doi: 10.1016/j.jfa.2012.02.018.

[5]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.

[6]

C. MercuriG. Riey and B. Sciunzi, A regularity result for the p-Laplacian near uniform ellipticity, Siam J. Math. Anal., 48 (2016), 2059-2075.  doi: 10.1137/16M1058546.

[7]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Applications of Mathematics, 51 (2006), 355-426.  doi: 10.1007/s10778-006-0110-3.

[8]

G. Mingione, The Calderon-Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(5), 6 (2007), 195-261. 

[9] P. Pucci and J. Serrin, The Maximum Principle, Birkhauser, Boston, 2007. 
[10]

B. Sciunzi, Some results on the qualitative properties of positive solutions of quasilinear elliptic equations, NoDEA. Nonlinear Differential Equations and Applications, 14 (2007), 315-334.  doi: 10.1007/s00030-007-5047-7.

[11]

B. Sciunzi, Regularity and comparison principles for p-Laplace equations with vanishing source term, Comm. Cont. Math., 16 (2014), 450013, 20pp.  doi: 10.1142/S0219199714500138.

[12]

E. Teixeira, Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358 (2014), 241-256.  doi: 10.1007/s00208-013-0959-5.

[13]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.  doi: 10.1016/0022-0396(84)90105-0.

show all references

References:
[1]

A. CaninoP. Le and B. Sciunzi, Local $W_{loc}^{2, m\left(\cdot \right)}$ regularity for p(·)-Laplace equations, Manuscripta Mathematica, 140 (2013), 481-496.  doi: 10.1007/s00229-012-0549-y.

[2]

L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations, 206 (2004), 483-515.  doi: 10.1016/j.jde.2004.05.012.

[3]

E. Di Benedetto, $C^{1+α}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.

[4]

T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269.  doi: 10.1016/j.jfa.2012.02.018.

[5]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.

[6]

C. MercuriG. Riey and B. Sciunzi, A regularity result for the p-Laplacian near uniform ellipticity, Siam J. Math. Anal., 48 (2016), 2059-2075.  doi: 10.1137/16M1058546.

[7]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Applications of Mathematics, 51 (2006), 355-426.  doi: 10.1007/s10778-006-0110-3.

[8]

G. Mingione, The Calderon-Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(5), 6 (2007), 195-261. 

[9] P. Pucci and J. Serrin, The Maximum Principle, Birkhauser, Boston, 2007. 
[10]

B. Sciunzi, Some results on the qualitative properties of positive solutions of quasilinear elliptic equations, NoDEA. Nonlinear Differential Equations and Applications, 14 (2007), 315-334.  doi: 10.1007/s00030-007-5047-7.

[11]

B. Sciunzi, Regularity and comparison principles for p-Laplace equations with vanishing source term, Comm. Cont. Math., 16 (2014), 450013, 20pp.  doi: 10.1142/S0219199714500138.

[12]

E. Teixeira, Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358 (2014), 241-256.  doi: 10.1007/s00208-013-0959-5.

[13]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.  doi: 10.1016/0022-0396(84)90105-0.

[1]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[2]

Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331

[3]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[4]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[5]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[6]

Junjie Zhang, Shenzhou Zheng, Chunyan Zuo. $ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3305-3318. doi: 10.3934/dcdss.2021080

[7]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[8]

Luigi C. Berselli, Carlo R. Grisanti. On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 53-71. doi: 10.3934/dcdss.2016.9.53

[9]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[10]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[11]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[12]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[13]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[14]

Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327

[15]

Kunquan Lan, Wei Lin. Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 849-861. doi: 10.3934/dcdsb.2016.21.849

[16]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[17]

Sunra J. N. Mosconi. Optimal elliptic regularity: A comparison between local and nonlocal equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 547-559. doi: 10.3934/dcdss.2018030

[18]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[19]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[20]

Ugur G. Abdulla. Regularity of $\infty$ for elliptic equations with measurable coefficients and its consequences. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3379-3397. doi: 10.3934/dcds.2012.32.3379

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (279)
  • HTML views (156)
  • Cited by (0)

[Back to Top]