Article Contents
Article Contents

# On the arithmetic difference of middle Cantor sets

• We determine all triples $(α, β, λ)$ such that $C_α- λ C_β$ forms a closed interval, where $C_α$ and $C_β$ are middle Cantor sets. This follows from a new recurrence type result for certain renormalization operators. We also consider the affine Cantor sets $K$ and $K'$ defined by two increasing maps which the product of their thicknesses is bigger than one. Then we construct a recurrent set for their renormalization operators. This leads us to characterize all $λ$ that $K- λ K'$ is a closed interval.

Mathematics Subject Classification: 28A78, 28A80, 58F14.

 Citation:

• Figure 1.  Blue region and curves determine all $\alpha, \beta$ that $C_\alpha+C_\beta= [0, ~2]$. For instant, the curves $r_{3, 1}, r_{2, 1}, r_{3, 2}, r_{4, 3}, r_{5, 4}$ are selected, that we characterized them by the functions $\beta=\alpha ^\frac{3}{1}, \alpha ^\frac{2}{1}, \alpha ^\frac{3}{2}, \alpha ^\frac{4}{3}, \alpha ^\frac{5}{4}$, respectively. The yellow Curves are the graph of these functions from downside to upside which have been drawn by Maple program

Figure 2.  Gray region illustrates the recurrent set $R$

Figure 3.  For middle Cantor sets, the sets $E, F, G, \Delta_1, \Delta_2$ and intervals $I, J$ are illustrated. Triangles $\Delta_1$ and $\Delta_2$ are non-empty and both project to the horizontal interval $I$

Figure 4.  The graph of map $T$ is illustrated

Figure 5.  The functions $g_0$ and $g_k$ are illustrated

•  G. Brown  and  W. Moran , Raikov systems and radicals in convolution measure algebras, J. London Math. Soc., 28 (1983) , 531-542.  doi: 10.1112/jlms/s2-28.3.531. G. Brown , M. Keane , W. Moran  and  C. Pearce , An inequality with applications to Cantor measures and normal numbers, Mathematika, 35 (1988) , 87-94.  doi: 10.1112/S0025579300006306. C. A. Cabrelli , K. E. Hare  and  U. M. Molter , Sums of Cantor sets yielding an interval, J. Aust. Math. Soc., 73 (2002) , 405-418.  doi: 10.1017/S1446788700009058. T. Cusick and M. Flahive, The Markoff and Lagrange Spectra, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1989. doi: 10. 1090/surv/030. G. A. Freiman, Diophantine Approximation and the Geometry of Numbers (Markov's Problem), Kalinin. Gosudarstv. Univ., Kalink, 1975. M. Hall , On the sum and product of continued fractions, Ann. of Math., 48 (1947) , 966-993.  doi: 10.2307/1969389. B. Honary , C. G. Moreira  and  M. Pourbarat , Stable intersections of affine Cantor sets, Bull. Braz. Math. Soc., 36 (2005) , 363-378.  doi: 10.1007/s00574-005-0044-0. K. Ilgar Eroglu , On the arithmetic sums of Cantor sets, Nonlinearity, 20 (2007) , 1145-1161.  doi: 10.1088/0951-7715/20/5/005. P. Mendes  and  F. Oliveira , On the topological structure of the arithmetic sum of two Cantor sets, Nonlinearity, 7 (1994) , 329-343.  doi: 10.1088/0951-7715/7/2/002. P. Mendes , Sum of Cantor sets: Self-similarity and measure, Amer. Math. Soc., 127 (1999) , 3305-3308.  doi: 10.1090/S0002-9939-99-05107-2. C. G. Moreira , Stable intersections of Cantor sets and homoclinic bifurcations, Ann. Inst. H. Poincare Anal. Non Lineaire, 13 (1996) , 741-781.  doi: 10.1016/S0294-1449(16)30122-6. C. G. Moreira  and  J.-C. Yoccoz , Stable intersections of regular Cantor sets with large Hausdorff dimension, Ann. of Math., 154 (2001) , 45-96.  doi: 10.2307/3062110. S. Newhouse , The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. IHES, 50 (1979) , 101-151. S. Newhouse , Non density of Axiom A(a) on $S^2$, Proc. A.M.S. Symp. Pure Math., 14 (1970) , 191-202. S. Newhouse , Diffeomorphisms with infinitely many sinks, Topology, 13 (1974) , 9-18.  doi: 10.1016/0040-9383(74)90034-2. J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Univ. Press, Cambridge, 1993. J. Palis  and  J.-C. Yoccoz , On the arithmetic sum of regular Cantor sets, Ann. Inst. Henri Poincare, 14 (1997) , 439-456.  doi: 10.1016/S0294-1449(97)80135-7. Y. Peres  and  P. Shmerkin , Resonance between Cantor sets, Ergod. Th. and Dynam. Sys., 29 (2009) , 201-221.  doi: 10.1017/S0143385708000369. M. Pourbarat, Stable intersection of middle-$α$ Cantor sets Comm. in Cont. Math., 17 (2015), 1550030, 19 pp. doi: 10. 1142/S0219199715500303. A. Sannami , An example of a regular Cantor set whose difference set is a Cantor set with positive measure, Hokkaido Math. J., 21 (1992) , 7-24.  doi: 10.14492/hokmj/1381413267. B. Solomyak , On the arithmetic sums of Cantor sets, Indag. Mathem., 8 (1997) , 133-141.  doi: 10.1016/S0019-3577(97)83357-5.

Figures(5)