
-
Previous Article
Moving planes for nonlinear fractional Laplacian equation with negative powers
- DCDS Home
- This Issue
-
Next Article
Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions
Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms
College of Mathematics, Sichuan University, Chengdu 610065, China |
The paper concerns area preserving homeomorphisms of surfaces that are isotopic to the identity. The purpose of the paper is to find a maximal isotopy such that we can give a fine description of the dynamics of its transverse foliation. We will define a sort of identity isotopies: torsion-low isotopies. In particular, when $f$ is a diffeomorphism with finitely many fixed points such that every fixed point is not degenerate, an identity isotopy $I$ of $f$ is torsion-low if and only if for every point $z$ fixed along the isotopy, the (real) rotation number $ρ(I, z)$ (which is well defined when one blows up $f$ at $z$) is contained in $(-1, 1)$. We will prove the existence of torsion-low maximal isotopies, and will deduce the local dynamics of the transverse foliations of any torsion-low maximal isotopy near any isolated singularity.
References:
[1] |
F. Béguin, S. Crovisier and F. Le Roux, Fixed point sets of isotopies on surfaces, preprint, arXiv: 1610.00686v2. |
[2] |
P. Dávalos,
On torus homeomorphisms whose rotation set is an interval, Math. Z., 275 (2013), 1005-1045.
doi: 10.1007/s00209-013-1168-3. |
[3] |
P. Dávalos, On the annular maps of the torus and sublinear diffusion, Journal of the Institute of Mathematics of Jussieu, (Published online 2016).
doi: 10.1017/S1474748016000268. |
[4] |
J. M. Gambaudo, P. Le Calvez and É. Pécou,
Une généralisation d'un théorème de Naishul, (French)[A generalization of a theorem of Naishul], C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 397-402.
|
[5] |
M. E. Hamstrom,
Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math., 10 (1966), 563-573.
|
[6] |
O. Jaulent,
Existence d'un feuilletage positivement transverse á un homéomorphisme de surface, Ann. Inst. Fourier, 64 (2014), 1441-1476.
doi: 10.5802/aif.2886. |
[7] |
A. Koropecki, P. Le Calvez and M. Nassiri,
Prime ends rotation numbers and periodic points, Duke Math. J., 164 (2015), 403-472.
doi: 10.1215/00127094-2861386. |
[8] |
A. Koropecki and F. A. Tal,
Bounded and unbounded behavior for area-preserving rational pseudo-rotations, Proc. London Math. Soc., 109 (2014), 785-822.
doi: 10.1112/plms/pdu023. |
[9] |
A. Koropecki and F. A. Tal,
Strictly toral dynamics, Invent. Math., 196 (2014), 339-381.
doi: 10.1007/s00222-013-0470-3. |
[10] |
P. Le Calvez,
Une version feuilletée équivariante du théorème de translation de Brouwer, (French) [An equivariant foliated version of Brouwer's translation theorem], Publ. Math. Inst. Hautes Études Sci., 102 (2005), 1-98.
doi: 10.1007/s10240-005-0034-1. |
[11] |
P. Le Calvez,
Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math. J., 133 (2006), 125-184.
doi: 10.1215/S0012-7094-06-13315-X. |
[12] |
P. Le Calvez,
Pourquoi les points périodiques des homéomorphismes du plan tournent-ils autour de certains points fixes?, (French) [Why do the periodic points of plane homomorphisms rotate around certain fixed points?], Ann. Sci. Éc. Norm. Supér., 41 (2008), 141-176.
doi: 10.24033/asens.2065. |
[13] |
P. Le Calvez and F. A. Tal,
Forcing theory for transverse trajectories of surface homeomorphisms, Invent. Math., 212 (2018), 619-729.
doi: 10.1007/s00222-017-0773-x. |
[14] |
F. Le Roux,
A topological characterization of holomorphic parabolic germs in the plane, Fund. Math., 198 (2008), 77-94.
doi: 10.4064/fm198-1-4. |
[15] |
F. Le Roux, L'ensemble de rotation autour d'un point fixe, (French) [The rotation set around a fixed point for surface homeomorphisms], Astérisque 350 (2013), x+109pp. |
[16] |
S. Matsumoto,
Types of fixed points of index one of surface homeomorphisms, Ergodic Theory Dynam. Systems, 21 (2001), 1181-1211.
doi: 10.1017/S0143385701001559. |
[17] |
S. Matsumoto,
Prime end rotation numbers of invariant seperating continua of annulus homeomorphisms, Proc Am. Math. Soc., 140 (2012), 839-845.
doi: 10.1090/S0002-9939-2011-11435-7. |
[18] |
G. S. McCarty,
Homeotopy groups, Trans. Amer. Math. Soc., 106 (1963), 293-304.
doi: 10.1090/S0002-9947-1963-0145531-9. |
[19] |
D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
doi: 10.1093/oso/9780198794899.001.0001. |
[20] |
V. A. Naǐshul',
Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in $\textbf{C}^{2}$ and $\textbf{C}P^{2}$, Trudy Moskov. Mat. Obshch., 44 (1982), 235-245.
|
[21] |
J. Yan,
Existence of periodic points near an isolated fixed point with Lefschetz index one and zero rotation for area preserving surface homeomorphisms, Ergodic Theory Dynam. Systems, 36 (2016), 2293-2333.
doi: 10.1017/etds.2015.18. |
show all references
References:
[1] |
F. Béguin, S. Crovisier and F. Le Roux, Fixed point sets of isotopies on surfaces, preprint, arXiv: 1610.00686v2. |
[2] |
P. Dávalos,
On torus homeomorphisms whose rotation set is an interval, Math. Z., 275 (2013), 1005-1045.
doi: 10.1007/s00209-013-1168-3. |
[3] |
P. Dávalos, On the annular maps of the torus and sublinear diffusion, Journal of the Institute of Mathematics of Jussieu, (Published online 2016).
doi: 10.1017/S1474748016000268. |
[4] |
J. M. Gambaudo, P. Le Calvez and É. Pécou,
Une généralisation d'un théorème de Naishul, (French)[A generalization of a theorem of Naishul], C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 397-402.
|
[5] |
M. E. Hamstrom,
Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math., 10 (1966), 563-573.
|
[6] |
O. Jaulent,
Existence d'un feuilletage positivement transverse á un homéomorphisme de surface, Ann. Inst. Fourier, 64 (2014), 1441-1476.
doi: 10.5802/aif.2886. |
[7] |
A. Koropecki, P. Le Calvez and M. Nassiri,
Prime ends rotation numbers and periodic points, Duke Math. J., 164 (2015), 403-472.
doi: 10.1215/00127094-2861386. |
[8] |
A. Koropecki and F. A. Tal,
Bounded and unbounded behavior for area-preserving rational pseudo-rotations, Proc. London Math. Soc., 109 (2014), 785-822.
doi: 10.1112/plms/pdu023. |
[9] |
A. Koropecki and F. A. Tal,
Strictly toral dynamics, Invent. Math., 196 (2014), 339-381.
doi: 10.1007/s00222-013-0470-3. |
[10] |
P. Le Calvez,
Une version feuilletée équivariante du théorème de translation de Brouwer, (French) [An equivariant foliated version of Brouwer's translation theorem], Publ. Math. Inst. Hautes Études Sci., 102 (2005), 1-98.
doi: 10.1007/s10240-005-0034-1. |
[11] |
P. Le Calvez,
Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math. J., 133 (2006), 125-184.
doi: 10.1215/S0012-7094-06-13315-X. |
[12] |
P. Le Calvez,
Pourquoi les points périodiques des homéomorphismes du plan tournent-ils autour de certains points fixes?, (French) [Why do the periodic points of plane homomorphisms rotate around certain fixed points?], Ann. Sci. Éc. Norm. Supér., 41 (2008), 141-176.
doi: 10.24033/asens.2065. |
[13] |
P. Le Calvez and F. A. Tal,
Forcing theory for transverse trajectories of surface homeomorphisms, Invent. Math., 212 (2018), 619-729.
doi: 10.1007/s00222-017-0773-x. |
[14] |
F. Le Roux,
A topological characterization of holomorphic parabolic germs in the plane, Fund. Math., 198 (2008), 77-94.
doi: 10.4064/fm198-1-4. |
[15] |
F. Le Roux, L'ensemble de rotation autour d'un point fixe, (French) [The rotation set around a fixed point for surface homeomorphisms], Astérisque 350 (2013), x+109pp. |
[16] |
S. Matsumoto,
Types of fixed points of index one of surface homeomorphisms, Ergodic Theory Dynam. Systems, 21 (2001), 1181-1211.
doi: 10.1017/S0143385701001559. |
[17] |
S. Matsumoto,
Prime end rotation numbers of invariant seperating continua of annulus homeomorphisms, Proc Am. Math. Soc., 140 (2012), 839-845.
doi: 10.1090/S0002-9939-2011-11435-7. |
[18] |
G. S. McCarty,
Homeotopy groups, Trans. Amer. Math. Soc., 106 (1963), 293-304.
doi: 10.1090/S0002-9947-1963-0145531-9. |
[19] |
D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
doi: 10.1093/oso/9780198794899.001.0001. |
[20] |
V. A. Naǐshul',
Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in $\textbf{C}^{2}$ and $\textbf{C}P^{2}$, Trudy Moskov. Mat. Obshch., 44 (1982), 235-245.
|
[21] |
J. Yan,
Existence of periodic points near an isolated fixed point with Lefschetz index one and zero rotation for area preserving surface homeomorphisms, Ergodic Theory Dynam. Systems, 36 (2016), 2293-2333.
doi: 10.1017/etds.2015.18. |



[1] |
Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007 |
[2] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[3] |
Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017 |
[4] |
Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597 |
[5] |
Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255 |
[6] |
Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 |
[7] |
Arek Goetz. Dynamics of a piecewise rotation. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593 |
[8] |
Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 |
[9] |
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 |
[10] |
David Cowan. A billiard model for a gas of particles with rotation. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101 |
[11] |
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315 |
[12] |
Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 |
[13] |
Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems and Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599 |
[14] |
Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, James A. Yorke. Solving the Babylonian problem of quasiperiodic rotation rates. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2279-2305. doi: 10.3934/dcdss.2019145 |
[15] |
Deissy M. S. Castelblanco. Restrictions on rotation sets for commuting torus homeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5257-5266. doi: 10.3934/dcds.2016030 |
[16] |
Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343 |
[17] |
Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631 |
[18] |
Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004 |
[19] |
Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703 |
[20] |
Pooja Girotra, Jyoti Ahuja, Dinesh Verma. Analysis of Rayleigh Taylor instability in nanofluids with rotation. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021018 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]