\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions

  • * Corresponding author

    * Corresponding author 

This work was funded by CRC 901 Control of self-organizing nonlinear systems: Theoretical methods and concepts of application (Project A8)

Abstract Full Text(HTML) Related Papers Cited by
  • We study the Ericksen-Leslie system equipped with a quadratic free energy functional. The norm restriction of the director is incorporated by a standard relaxation technique using a double-well potential. We use the relative energy concept, often applied in the context of compressible Euler- or related systems of fluid dynamics, to prove weak-strong uniqueness of solutions. A main novelty, not only in the context of the Ericksen-Leslie model, is that the relative energy inequality is proved for a system with a nonconvex energy.

    Mathematics Subject Classification: Primary: 35Q35, 35D30; Secondary: 35K52, 76A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford University Press, New York, 1994.
      D. Breit , E. Feireisl  and  M. Hofmanová , Incompressible limit for compressible fluids with stochastic forcing, Arch. Rational Mech. Anal., 222 (2016) , 895-926.  doi: 10.1007/s00205-016-1014-y.
      C. Cavaterra , E. Rocca  and  H. Wu , Global weak solution and blow-up criterion of the general Ericksen—Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013) , 24-57.  doi: 10.1016/j.jde.2013.03.009.
      C. M. Dafermos , The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979) , 167-179.  doi: 10.1007/BF00250353.
      C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2016. doi: 10.1007/978-3-662-49451-6.
      M. Dai , Existence of regular solutions to an Ericksen—Leslie model of the liquid crystal system, Commun. Math. Sci., 13 (2015) , 1711-1740.  doi: 10.4310/CMS.2015.v13.n7.a4.
      M. Dai , J. Qing  and  M. Schonbek , Regularity of solutions to the liquid crystals systems in $\mathbb R^2$ and $\mathbb R^3$, Nonlinearity, 25 (2012) , 513-532.  doi: 10.1088/0951-7715/25/2/513.
      J. Diestel and J. J. Uhl, Jr. Vector Measures, American Mathematical Society, Providence, Rhode Island, 1977.
      E. Emmrich and R. Lasarzik, Existence of weak solutions to the Ericksen-Leslie model for a general class of free energies, arXiv e-prints, 1711.10277, 2017.
      J. L. Ericksen , Conservation laws for liquid crystals, J. Rheol., 5 (1961) , 23-34.  doi: 10.1122/1.548883.
      E. Feireisl , Relative entropies in thermodynamics of complete fluid systems, Discrete Contin. Dyn. Syst., 32 (2012) , 3059-3080.  doi: 10.3934/dcds.2012.32.3059.
      E. Feireisl, Relative entropies, dissipative solutions, and singular limits of complete fluid systems, In Hyperbolic Problems: Theory, Numerics, Applications, volume 8 of AIMS on Applied Mathematics, pages 11-27. AIMS, Springfield, USA, 2014.
      E. Feireisl , B. J. Jin  and  A. Novotný , Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier—Stokes system, J. Math. Fluid Mech., 14 (2012) , 717-730.  doi: 10.1007/s00021-011-0091-9.
      E. Feireisl  and  A. Novotný , Weak-strong uniqueness property for the full Navier—Stokes—Fourier system, Arch. Ration. Mech. Anal., 204 (2012) , 683-706.  doi: 10.1007/s00205-011-0490-3.
      E. Feireisl , A. Novotný  and  Y. Sun , Suitable weak solutions to the Navier—Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011) , 611-631.  doi: 10.1512/iumj.2011.60.4406.
      J. Fischer , A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier—Stokes equation, SIAM J. Numer. Anal., 53 (2015) , 2178-2205.  doi: 10.1137/140966654.
      H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferential-Gleichungen, Akademie-Verlag, Berlin, 1974.
      R. Lasarzik, Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy, arXiv: 1711.04638, Nov. 2017.
      R. Lasarzik, Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy, arXiv: 1711.03371, Nov. 2017.
      F. M. Leslie , Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968) , 265-283.  doi: 10.1007/BF00251810.
      F.-H. Lin  and  C. Liu , Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995) , 501-537.  doi: 10.1002/cpa.3160480503.
      F.-H. Lin  and  C. Liu , Existence of solutions for the Ericksen—Leslie system, Arch. Rational Mech. Anal., 154 (2000) , 135-156.  doi: 10.1007/s002050000102.
      P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, The Clarendon Press, New York, 1996.
      W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
      C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
      G. Prodi , Un teorema di unicità per le equazioni di Navier—Stokes, Ann. Mat. Pura Appl.(4), 48 (1959) , 173-182.  doi: 10.1007/BF02410664.
      T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser/Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.
      J. Serrin , On the interior regularity of weak solutions of the Navier—Stokes equations, Arch. Rational Mech. Anal., 9 (1962) , 187-195.  doi: 10.1007/BF00253344.
      Y.-F. Yang , C. Dou  and  Q. Ju , Weak-strong uniqueness property for the compressible flow of liquid crystals, J. Differential Equations, 255 (2013) , 1233-1253.  doi: 10.1016/j.jde.2013.05.011.
      E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.
      J.-H. Zhao  and  Q. Liu , Weak-strong uniqueness of hydrodynamic flow of nematic liquid crystals, Electron. J. Differential Equations, 2012 (2012) , 1-16. 
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(1770) PDF downloads(322) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return