We study the Ericksen-Leslie system equipped with a quadratic free energy functional. The norm restriction of the director is incorporated by a standard relaxation technique using a double-well potential. We use the relative energy concept, often applied in the context of compressible Euler- or related systems of fluid dynamics, to prove weak-strong uniqueness of solutions. A main novelty, not only in the context of the Ericksen-Leslie model, is that the relative energy inequality is proved for a system with a nonconvex energy.
Citation: |
A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford University Press, New York, 1994.
![]() ![]() |
|
D. Breit
, E. Feireisl
and M. Hofmanová
, Incompressible limit for compressible fluids with stochastic forcing, Arch. Rational Mech. Anal., 222 (2016)
, 895-926.
doi: 10.1007/s00205-016-1014-y.![]() ![]() ![]() |
|
C. Cavaterra
, E. Rocca
and H. Wu
, Global weak solution and blow-up criterion of the general Ericksen—Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013)
, 24-57.
doi: 10.1016/j.jde.2013.03.009.![]() ![]() ![]() |
|
C. M. Dafermos
, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979)
, 167-179.
doi: 10.1007/BF00250353.![]() ![]() ![]() |
|
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6.![]() ![]() ![]() |
|
M. Dai
, Existence of regular solutions to an Ericksen—Leslie model of the liquid crystal system, Commun. Math. Sci., 13 (2015)
, 1711-1740.
doi: 10.4310/CMS.2015.v13.n7.a4.![]() ![]() ![]() |
|
M. Dai
, J. Qing
and M. Schonbek
, Regularity of solutions to the liquid crystals systems in $\mathbb R^2$ and $\mathbb R^3$, Nonlinearity, 25 (2012)
, 513-532.
doi: 10.1088/0951-7715/25/2/513.![]() ![]() ![]() |
|
J. Diestel and J. J. Uhl, Jr. Vector Measures, American Mathematical Society, Providence, Rhode Island, 1977.
![]() ![]() |
|
E. Emmrich and R. Lasarzik, Existence of weak solutions to the Ericksen-Leslie model for a general class of free energies, arXiv e-prints, 1711.10277, 2017.
![]() |
|
J. L. Ericksen
, Conservation laws for liquid crystals, J. Rheol., 5 (1961)
, 23-34.
doi: 10.1122/1.548883.![]() ![]() ![]() |
|
E. Feireisl
, Relative entropies in thermodynamics of complete fluid systems, Discrete Contin. Dyn. Syst., 32 (2012)
, 3059-3080.
doi: 10.3934/dcds.2012.32.3059.![]() ![]() ![]() |
|
E. Feireisl, Relative entropies, dissipative solutions, and singular limits of complete fluid systems, In Hyperbolic Problems: Theory, Numerics, Applications, volume 8 of AIMS on Applied Mathematics, pages 11-27. AIMS, Springfield, USA, 2014.
![]() ![]() |
|
E. Feireisl
, B. J. Jin
and A. Novotný
, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier—Stokes system, J. Math. Fluid Mech., 14 (2012)
, 717-730.
doi: 10.1007/s00021-011-0091-9.![]() ![]() ![]() |
|
E. Feireisl
and A. Novotný
, Weak-strong uniqueness property for the full Navier—Stokes—Fourier system, Arch. Ration. Mech. Anal., 204 (2012)
, 683-706.
doi: 10.1007/s00205-011-0490-3.![]() ![]() ![]() |
|
E. Feireisl
, A. Novotný
and Y. Sun
, Suitable weak solutions to the Navier—Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011)
, 611-631.
doi: 10.1512/iumj.2011.60.4406.![]() ![]() ![]() |
|
J. Fischer
, A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier—Stokes equation, SIAM J. Numer. Anal., 53 (2015)
, 2178-2205.
doi: 10.1137/140966654.![]() ![]() ![]() |
|
H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferential-Gleichungen, Akademie-Verlag, Berlin, 1974.
![]() ![]() |
|
R. Lasarzik, Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy, arXiv: 1711.04638, Nov. 2017.
![]() |
|
R. Lasarzik, Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy, arXiv: 1711.03371, Nov. 2017.
![]() |
|
F. M. Leslie
, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968)
, 265-283.
doi: 10.1007/BF00251810.![]() ![]() ![]() |
|
F.-H. Lin
and C. Liu
, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995)
, 501-537.
doi: 10.1002/cpa.3160480503.![]() ![]() ![]() |
|
F.-H. Lin
and C. Liu
, Existence of solutions for the Ericksen—Leslie system, Arch. Rational Mech. Anal., 154 (2000)
, 135-156.
doi: 10.1007/s002050000102.![]() ![]() ![]() |
|
P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, The Clarendon Press, New York, 1996.
![]() ![]() |
|
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
![]() ![]() |
|
C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
![]() ![]() |
|
G. Prodi
, Un teorema di unicità per le equazioni di Navier—Stokes, Ann. Mat. Pura Appl.(4), 48 (1959)
, 173-182.
doi: 10.1007/BF02410664.![]() ![]() ![]() |
|
T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser/Springer Basel AG, Basel, 2013.
doi: 10.1007/978-3-0348-0513-1.![]() ![]() ![]() |
|
J. Serrin
, On the interior regularity of weak solutions of the Navier—Stokes equations, Arch. Rational Mech. Anal., 9 (1962)
, 187-195.
doi: 10.1007/BF00253344.![]() ![]() ![]() |
|
Y.-F. Yang
, C. Dou
and Q. Ju
, Weak-strong uniqueness property for the compressible flow of liquid crystals, J. Differential Equations, 255 (2013)
, 1233-1253.
doi: 10.1016/j.jde.2013.05.011.![]() ![]() ![]() |
|
E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0.![]() ![]() ![]() |
|
J.-H. Zhao
and Q. Liu
, Weak-strong uniqueness of hydrodynamic flow of nematic liquid crystals, Electron. J. Differential Equations, 2012 (2012)
, 1-16.
![]() ![]() |