American Institute of Mathematical Sciences

September  2018, 38(9): 4715-4726. doi: 10.3934/dcds.2018207

Periodic solutions of second order equations with asymptotical non-resonance

 1 College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China 2 School of Mathematical Sciences, Soochow University, Suzhou 215006, China

* Corresponding author: Dingbian Qian

Received  January 2018 Revised  April 2018 Published  June 2018

Fund Project: This work was supported by National Natural Science Foundation of China (No.11671287, No.61573228).

This paper deals with the periodic solutions of second order equations with asymptotical non-resonance. Using the point of view that the force is a perturbation, we can think that, asymptotically, the solutions of forced non-autonomous equation behave as those of the autonomous equation. Then, under a sharp integral condition, we prove that the periodic solution of non-autonomous equation can be estimated by using time map of autonomous equation. The existence of periodic solutions is thus proved via qualitative analysis and topological degree theory. The main result in this paper generalize a existence result obtained by Capietto, Mawhin and Zanolin.

Citation: Xuelei Wang, Dingbian Qian, Xiying Sun. Periodic solutions of second order equations with asymptotical non-resonance. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4715-4726. doi: 10.3934/dcds.2018207
References:
 [1] A. Capietto, J. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.  doi: 10.1090/S0002-9947-1992-1042285-7. [2] A. Capietto, J. Mawhin and F. Zanolin, A Continuation theorem for periodic boundary value problems with oscillatory nonlinearities, Nonlinear Differential Equations Appl., 2 (1995), 133-163.  doi: 10.1007/BF01295308. [3] T. Ding, An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance, Proc. Amer. Math. Soc., 86 (1982), 47-54.  doi: 10.1090/S0002-9939-1982-0663864-1. [4] T. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations, 105 (1993), 364-409.  doi: 10.1006/jdeq.1993.1093. [5] T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.  doi: 10.1016/0022-0396(92)90076-Y. [6] T. Ding and W. Ding, Resonance problem for a class of Duffing's equations, Chin. Ann. of Math. -B, 6 (1985), 427-432. [7] L. Fernandes and F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term, Arch. Math., 51 (1988), 151-163.  doi: 10.1007/BF01206473. [8] A. Fonda and F. Zanolin, On the use of time-maps for the solvability of nonlinear boundary value problems, Arch. Math., 59 (1992), 245-259.  doi: 10.1007/BF01197322. [9] D. Leach, On Poincaré's perturbation theorem and a theorem of W.S. Loud, J. Differential Equations, 7 (1970), 34-53.  doi: 10.1016/0022-0396(70)90122-1. [10] W. Loud, Periodic solutions of nonlinear differential equations of Duffing type, In: Proc. United States - Japan Seminar on Differential and Functional Equations, Benjamin, New York, 1967,199–224. [11] J. Mawhin, Recent trends in nonlinear boundary value problems, In: VII Intern. Konferenz über Nichtlineare Schwingungen (Berlin 1975), Band I. 2, Abhandlungen der AdW, Akademie Verlag, Berlin, 1977, 51–70. [12] Z. Opial, Sur les solutions périodiques de l'équation différentielle $x''+g(x) = p(t)$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 8 (1960), 151-156. [13] D. Qian, Time-maps and Duffing equations across resonance, Science in China A, 23 (1993), 471-479.

show all references

References:
 [1] A. Capietto, J. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.  doi: 10.1090/S0002-9947-1992-1042285-7. [2] A. Capietto, J. Mawhin and F. Zanolin, A Continuation theorem for periodic boundary value problems with oscillatory nonlinearities, Nonlinear Differential Equations Appl., 2 (1995), 133-163.  doi: 10.1007/BF01295308. [3] T. Ding, An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance, Proc. Amer. Math. Soc., 86 (1982), 47-54.  doi: 10.1090/S0002-9939-1982-0663864-1. [4] T. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations, 105 (1993), 364-409.  doi: 10.1006/jdeq.1993.1093. [5] T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.  doi: 10.1016/0022-0396(92)90076-Y. [6] T. Ding and W. Ding, Resonance problem for a class of Duffing's equations, Chin. Ann. of Math. -B, 6 (1985), 427-432. [7] L. Fernandes and F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term, Arch. Math., 51 (1988), 151-163.  doi: 10.1007/BF01206473. [8] A. Fonda and F. Zanolin, On the use of time-maps for the solvability of nonlinear boundary value problems, Arch. Math., 59 (1992), 245-259.  doi: 10.1007/BF01197322. [9] D. Leach, On Poincaré's perturbation theorem and a theorem of W.S. Loud, J. Differential Equations, 7 (1970), 34-53.  doi: 10.1016/0022-0396(70)90122-1. [10] W. Loud, Periodic solutions of nonlinear differential equations of Duffing type, In: Proc. United States - Japan Seminar on Differential and Functional Equations, Benjamin, New York, 1967,199–224. [11] J. Mawhin, Recent trends in nonlinear boundary value problems, In: VII Intern. Konferenz über Nichtlineare Schwingungen (Berlin 1975), Band I. 2, Abhandlungen der AdW, Akademie Verlag, Berlin, 1977, 51–70. [12] Z. Opial, Sur les solutions périodiques de l'équation différentielle $x''+g(x) = p(t)$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 8 (1960), 151-156. [13] D. Qian, Time-maps and Duffing equations across resonance, Science in China A, 23 (1993), 471-479.
 [1] Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765 [2] D. Bonheure, C. Fabry, D. Smets. Periodic solutions of forced isochronous oscillators at resonance. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 907-930. doi: 10.3934/dcds.2002.8.907 [3] Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835 [4] Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 [5] Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 [6] Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361 [7] Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251 [8] Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic and Related Models, 2015, 8 (1) : 29-51. doi: 10.3934/krm.2015.8.29 [9] Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667 [10] Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023 [11] Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064 [12] Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861 [13] Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971 [14] Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2847-2860. doi: 10.3934/dcds.2014.34.2847 [15] D. Ruiz, J. R. Ward. Some notes on periodic systems with linear part at resonance. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 337-350. doi: 10.3934/dcds.2004.11.337 [16] Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989 [17] Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579 [18] Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51 [19] Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 [20] Huyuan Chen, Hichem Hajaiej. Classification of non-topological solutions of an elliptic equation arising from self-dual gauged Sigma model. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3373-3393. doi: 10.3934/cpaa.2021109

2020 Impact Factor: 1.392