October  2018, 38(10): 5011-5019. doi: 10.3934/dcds.2018219

On the hybrid control of metric entropy for dominated splittings

1, 3. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2, 4. 

Center for Dynamical Systems and Differential Equations, Soochow University, Suzhou 215006, China

* Author to whom any correspondence should be addressed

Received  October 2017 Revised  May 2018 Published  July 2018

Let $f$ be a $C^1$ diffeomorphism on a compact Riemannian manifold without boundary and $\mu$ an ergodic $f$-invariant measure whose Oseledets splitting admits domination. We give a hybrid estimate from above for the metric entropy of $\mu$ in terms of Lyapunov exponents and volume growth. Furthermore, for any $C^1$ diffeomorphism away from tangencies, its topological entropy is bounded by the volume growth.

Citation: Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5011-5019. doi: 10.3934/dcds.2018219
References:
[1]

F. AbdenurC. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60.  doi: 10.1007/s11856-011-0041-5.

[2]

A. AvilaS. Crovisier and A. Wilkinson, Diffeomorphisms with positive metric entropy, Publ. Math. Inst. Hautes Études Sci., 124 (2016), 319-347.  doi: 10.1007/s10240-016-0086-4.

[3]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Adv. Math., 226 (2011), 673-726.  doi: 10.4007/annals.2005.161.1423.

[4]

S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Adv. Math., 226 (2011), 673-726.  doi: 10.1016/j.aim.2010.07.013.

[5]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations, Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 93-98.  doi: 10.1090/S1079-6762-97-00030-9.

[6]

M. Hirsch, C. Pugh and M. Shub, Invariant msnifolds, volume 583 of Lect. Notes in Math., Springer Verlag, 1977.

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. 

[8]

O. Kozlovski, An integral formula for topological entropy of C maps, Erg. Th. Dyn. Sys., 18 (1998), 405-424.  doi: 10.1017/S0143385798100391.

[9]

F. Ledrappier and L. S. Young, The metric entropy of diffeomorphisms. Part Ⅰ: Characterization of measures satisfying Pesin's entropy formula, Ann. of Math., 122 (1985), 509-539.  doi: 10.2307/1971328.

[10]

G. LiaoW. Sun and S. Wang, Upper semi-continuity of entropy map for nonnuiformly hyperbolic systems, Nonlinearity, 28 (2015), 2977-2992.  doi: 10.1088/0951-7715/28/8/2977.

[11]

G. LiaoM. Viana and J. Yang, The entropy conjecture for diffeomorphisms away from tangencies, J. Eur. Math. Soc., 28 (2015), 2977-2992.  doi: 10.4171/JEMS/413.

[12]

S. Newhouse, Entropy and volume, Ergodic Theory Dynam. Systems, 8* (1988), 283–299. doi: 10.1017/S0143385700009469.

[13]

V. I. Oseledets, A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19 (1968), 179-210. 

[14]

Y. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Russian Math.Surveys, 32 (1977), 55-112,287. 

[15]

F. Przytycki, An upper estimation for topological entropy of diffeomorphisms, Invent. Math., 59 (1980), 205-213.  doi: 10.1007/BF01453234.

[16]

D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat., 9 (1978), 83-88.  doi: 10.1007/BF02584795.

[17]

R. Saghin, Volume growth and entropy for C1 partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 34 (2014), 3789-3801.  doi: 10.3934/dcds.2014.34.3789.

[18]

W. Sun and X. Tian, Dominated splittings and Pesin's entropy formula, Discrete Contin. Dyn. Syst., 32 (2012), 1421-1434. 

[19]

P. Walters, An Introduction to Ergodic Theory, New York: Springer-Verlag, 1982.

[20]

J. Yang, C1 Dynamics far from Tangencies, PhD thesis, IMPA, Rio de Janeiro.

show all references

References:
[1]

F. AbdenurC. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60.  doi: 10.1007/s11856-011-0041-5.

[2]

A. AvilaS. Crovisier and A. Wilkinson, Diffeomorphisms with positive metric entropy, Publ. Math. Inst. Hautes Études Sci., 124 (2016), 319-347.  doi: 10.1007/s10240-016-0086-4.

[3]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Adv. Math., 226 (2011), 673-726.  doi: 10.4007/annals.2005.161.1423.

[4]

S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Adv. Math., 226 (2011), 673-726.  doi: 10.1016/j.aim.2010.07.013.

[5]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations, Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 93-98.  doi: 10.1090/S1079-6762-97-00030-9.

[6]

M. Hirsch, C. Pugh and M. Shub, Invariant msnifolds, volume 583 of Lect. Notes in Math., Springer Verlag, 1977.

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. 

[8]

O. Kozlovski, An integral formula for topological entropy of C maps, Erg. Th. Dyn. Sys., 18 (1998), 405-424.  doi: 10.1017/S0143385798100391.

[9]

F. Ledrappier and L. S. Young, The metric entropy of diffeomorphisms. Part Ⅰ: Characterization of measures satisfying Pesin's entropy formula, Ann. of Math., 122 (1985), 509-539.  doi: 10.2307/1971328.

[10]

G. LiaoW. Sun and S. Wang, Upper semi-continuity of entropy map for nonnuiformly hyperbolic systems, Nonlinearity, 28 (2015), 2977-2992.  doi: 10.1088/0951-7715/28/8/2977.

[11]

G. LiaoM. Viana and J. Yang, The entropy conjecture for diffeomorphisms away from tangencies, J. Eur. Math. Soc., 28 (2015), 2977-2992.  doi: 10.4171/JEMS/413.

[12]

S. Newhouse, Entropy and volume, Ergodic Theory Dynam. Systems, 8* (1988), 283–299. doi: 10.1017/S0143385700009469.

[13]

V. I. Oseledets, A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19 (1968), 179-210. 

[14]

Y. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Russian Math.Surveys, 32 (1977), 55-112,287. 

[15]

F. Przytycki, An upper estimation for topological entropy of diffeomorphisms, Invent. Math., 59 (1980), 205-213.  doi: 10.1007/BF01453234.

[16]

D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat., 9 (1978), 83-88.  doi: 10.1007/BF02584795.

[17]

R. Saghin, Volume growth and entropy for C1 partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 34 (2014), 3789-3801.  doi: 10.3934/dcds.2014.34.3789.

[18]

W. Sun and X. Tian, Dominated splittings and Pesin's entropy formula, Discrete Contin. Dyn. Syst., 32 (2012), 1421-1434. 

[19]

P. Walters, An Introduction to Ergodic Theory, New York: Springer-Verlag, 1982.

[20]

J. Yang, C1 Dynamics far from Tangencies, PhD thesis, IMPA, Rio de Janeiro.

[1]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205

[2]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[3]

Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789

[4]

Ilesanmi Adeboye, Harrison Bray, David Constantine. Entropy rigidity and Hilbert volume. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1731-1744. doi: 10.3934/dcds.2019075

[5]

François Ledrappier, Seonhee Lim. Volume entropy of hyperbolic buildings. Journal of Modern Dynamics, 2010, 4 (1) : 139-165. doi: 10.3934/jmd.2010.4.139

[6]

Wooyeon Kim, Seonhee Lim. Notes on the values of volume entropy of graphs. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5117-5129. doi: 10.3934/dcds.2020221

[7]

Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048

[8]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[9]

Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013

[10]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[11]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[12]

Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022010

[13]

Svetlana Pastukhova, Valeria Chiadò Piat. Homogenization of multivalued monotone operators with variable growth exponent. Networks and Heterogeneous Media, 2020, 15 (2) : 281-305. doi: 10.3934/nhm.2020013

[14]

Antonio Siconolfi, Gabriele Terrone. A metric proof of the converse Lyapunov theorem for semicontinuous multivalued dynamics. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4409-4427. doi: 10.3934/dcds.2012.32.4409

[15]

Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249

[16]

Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080

[17]

Luis Barreira, Claudia Valls. Quadratic Lyapunov sequences and arbitrary growth rates. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 63-74. doi: 10.3934/dcds.2010.26.63

[18]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[19]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[20]

Frank Blume. Realizing subexponential entropy growth rates by cutting and stacking. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3435-3459. doi: 10.3934/dcdsb.2015.20.3435

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (248)
  • HTML views (130)
  • Cited by (1)

Other articles
by authors

[Back to Top]