We study chaotic properties of uniformly convergent nonautonomous dynamical systems. We show that, contrary to the autonomous systems on the compact interval, positivity of topological sequence entropy and occurrence of Li-Yorke chaos are not equivalent, more precisely, neither of the two possible implications is true.
Citation: |
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9.![]() ![]() ![]() |
[2] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.
doi: 10.1515/crll.2002.053.![]() ![]() ![]() |
[3] |
R. Bowen, Periodic points and measures for axiom A diffeomorphims, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452.![]() ![]() ![]() |
[4] |
A. M. Bruckner and J. Smítal, A characterization of $ω$-limit sets of maps of the interval with zero topological entropy, Ergod. Theory and Dyn. Syst., 13 (1993), 7-19.
doi: 10.1017/S0143385700007173.![]() ![]() ![]() |
[5] |
M. N. Burattini, F. A. B. Coutinho, L. F. Lopez and E. Massad, Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol., 68 (2006), 2263-2282.
doi: 10.1007/s11538-006-9108-6.![]() ![]() ![]() |
[6] |
J. S. Cánovas, Li-Yorke chaos in a class of nonautonmous discrete systems, J. Difference Equ. Appl., 17 (2011), 479-486.
doi: 10.1080/10236190903049025.![]() ![]() ![]() |
[7] |
T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.
doi: 10.1090/S0002-9939-2013-11717-X.![]() ![]() ![]() |
[8] |
J. Dvořáková, Chaos in nonautonomous discrete dynamical systems, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 4649-4652.
doi: 10.1016/j.cnsns.2012.06.005.![]() ![]() ![]() |
[9] |
G. L. Forti, L. Paganoni and J. Smítal, Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc., 59 (1999), 1-20.
doi: 10.1017/S000497270003255X.![]() ![]() ![]() |
[10] |
N. Franzová and J. Smítal, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086.
doi: 10.1090/S0002-9939-1991-1062387-3.![]() ![]() ![]() |
[11] |
S. Gao, Y. Liu and Y. Zhang, Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear. Sci. Numer. Simul., 17 (2012), 1659-1672.
doi: 10.1016/j.cnsns.2011.08.040.![]() ![]() ![]() |
[12] |
T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.
doi: 10.1112/plms/s3-29.2.331.![]() ![]() ![]() |
[13] |
S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random & Computational Dynamics, 4 (1996), 205-233.
![]() ![]() |
[14] |
J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.
doi: 10.1090/S0002-9947-1986-0849479-9.![]() ![]() ![]() |
[15] |
J. Šotolová,
Topological Sequence Entropy of Nonautonomous Dynamical Systems, Diploma thesis, Silesian University in Opava, 2016.
![]() |
[16] |
M. Štefánková, Inheriting of chaos in uniformly convergent nonautonmous dynamical systems on the interval, Discrete Contin. Dyn. Syst., 36 (2016), 3435-3443.
doi: 10.3934/dcds.2016.36.3435.![]() ![]() ![]() |