
-
Previous Article
Entropy formulae of conditional entropy in mean metrics
- DCDS Home
- This Issue
-
Next Article
Lyapunov exponents of cocycles over non-uniformly hyperbolic systems
Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems
Mathematical Institute, Silesian University in Opava, Na Rybníčku 626/1, Opava, 746 01, Czech Republic |
We study chaotic properties of uniformly convergent nonautonomous dynamical systems. We show that, contrary to the autonomous systems on the compact interval, positivity of topological sequence entropy and occurrence of Li-Yorke chaos are not equivalent, more precisely, neither of the two possible implications is true.
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew,
Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maass,
On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.
doi: 10.1515/crll.2002.053. |
[3] |
R. Bowen,
Periodic points and measures for axiom A diffeomorphims, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452. |
[4] |
A. M. Bruckner and J. Smítal,
A characterization of $ω$-limit sets of maps of the interval with zero topological entropy, Ergod. Theory and Dyn. Syst., 13 (1993), 7-19.
doi: 10.1017/S0143385700007173. |
[5] |
M. N. Burattini, F. A. B. Coutinho, L. F. Lopez and E. Massad,
Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol., 68 (2006), 2263-2282.
doi: 10.1007/s11538-006-9108-6. |
[6] |
J. S. Cánovas,
Li-Yorke chaos in a class of nonautonmous discrete systems, J. Difference Equ. Appl., 17 (2011), 479-486.
doi: 10.1080/10236190903049025. |
[7] |
T. Downarowicz,
Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.
doi: 10.1090/S0002-9939-2013-11717-X. |
[8] |
J. Dvořáková,
Chaos in nonautonomous discrete dynamical systems, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 4649-4652.
doi: 10.1016/j.cnsns.2012.06.005. |
[9] |
G. L. Forti, L. Paganoni and J. Smítal,
Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc., 59 (1999), 1-20.
doi: 10.1017/S000497270003255X. |
[10] |
N. Franzová and J. Smítal,
Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086.
doi: 10.1090/S0002-9939-1991-1062387-3. |
[11] |
S. Gao, Y. Liu and Y. Zhang,
Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear. Sci. Numer. Simul., 17 (2012), 1659-1672.
doi: 10.1016/j.cnsns.2011.08.040. |
[12] |
T. N. T. Goodman,
Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.
doi: 10.1112/plms/s3-29.2.331. |
[13] |
S. Kolyada and L. Snoha,
Topological entropy of nonautonomous dynamical systems, Random & Computational Dynamics, 4 (1996), 205-233.
|
[14] |
J. Smítal,
Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.
doi: 10.1090/S0002-9947-1986-0849479-9. |
[15] |
J. Šotolová,
Topological Sequence Entropy of Nonautonomous Dynamical Systems, Diploma thesis, Silesian University in Opava, 2016. |
[16] |
M. Štefánková,
Inheriting of chaos in uniformly convergent nonautonmous dynamical systems on the interval, Discrete Contin. Dyn. Syst., 36 (2016), 3435-3443.
doi: 10.3934/dcds.2016.36.3435. |
show all references
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew,
Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maass,
On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.
doi: 10.1515/crll.2002.053. |
[3] |
R. Bowen,
Periodic points and measures for axiom A diffeomorphims, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452. |
[4] |
A. M. Bruckner and J. Smítal,
A characterization of $ω$-limit sets of maps of the interval with zero topological entropy, Ergod. Theory and Dyn. Syst., 13 (1993), 7-19.
doi: 10.1017/S0143385700007173. |
[5] |
M. N. Burattini, F. A. B. Coutinho, L. F. Lopez and E. Massad,
Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol., 68 (2006), 2263-2282.
doi: 10.1007/s11538-006-9108-6. |
[6] |
J. S. Cánovas,
Li-Yorke chaos in a class of nonautonmous discrete systems, J. Difference Equ. Appl., 17 (2011), 479-486.
doi: 10.1080/10236190903049025. |
[7] |
T. Downarowicz,
Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.
doi: 10.1090/S0002-9939-2013-11717-X. |
[8] |
J. Dvořáková,
Chaos in nonautonomous discrete dynamical systems, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 4649-4652.
doi: 10.1016/j.cnsns.2012.06.005. |
[9] |
G. L. Forti, L. Paganoni and J. Smítal,
Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc., 59 (1999), 1-20.
doi: 10.1017/S000497270003255X. |
[10] |
N. Franzová and J. Smítal,
Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086.
doi: 10.1090/S0002-9939-1991-1062387-3. |
[11] |
S. Gao, Y. Liu and Y. Zhang,
Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear. Sci. Numer. Simul., 17 (2012), 1659-1672.
doi: 10.1016/j.cnsns.2011.08.040. |
[12] |
T. N. T. Goodman,
Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.
doi: 10.1112/plms/s3-29.2.331. |
[13] |
S. Kolyada and L. Snoha,
Topological entropy of nonautonomous dynamical systems, Random & Computational Dynamics, 4 (1996), 205-233.
|
[14] |
J. Smítal,
Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.
doi: 10.1090/S0002-9947-1986-0849479-9. |
[15] |
J. Šotolová,
Topological Sequence Entropy of Nonautonomous Dynamical Systems, Diploma thesis, Silesian University in Opava, 2016. |
[16] |
M. Štefánková,
Inheriting of chaos in uniformly convergent nonautonmous dynamical systems on the interval, Discrete Contin. Dyn. Syst., 36 (2016), 3435-3443.
doi: 10.3934/dcds.2016.36.3435. |


[1] |
Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127 |
[2] |
Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288 |
[3] |
Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086 |
[4] |
João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465 |
[5] |
Daniel Gonçalves, Bruno Brogni Uggioni. Li-Yorke Chaos for ultragraph shift spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2347-2365. doi: 10.3934/dcds.2020117 |
[6] |
Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585 |
[7] |
Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104 |
[8] |
Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451 |
[9] |
Silvére Gangloff, Alonso Herrera, Cristobal Rojas, Mathieu Sablik. Computability of topological entropy: From general systems to transformations on Cantor sets and the interval. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4259-4286. doi: 10.3934/dcds.2020180 |
[10] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[11] |
Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363 |
[12] |
José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781 |
[13] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[14] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[15] |
Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115 |
[16] |
H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403 |
[17] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[18] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[19] |
Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131 |
[20] |
Jérôme Rousseau, Paulo Varandas, Yun Zhao. Entropy formulas for dynamical systems with mistakes. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4391-4407. doi: 10.3934/dcds.2012.32.4391 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]