In a bounded domain $\Omega\subset\mathbb{R}^n$, where $n\ge 3$, we consider the quasilinear parabolic-parabolic Keller-Segel system
$\begin{equation*}\begin{cases}u_t = \nabla\cdot({D(u)\nabla u+u\nabla v}) \;\;\; &\text{in}\ \Omega\times(0,\infty)\\v_t = \Delta v-v+u &\text{in}\ \Omega\times(0,\infty)\end{cases}\end{equation*}$
with homogeneous Neumann boundary conditions. We will find that the condition $D(u)\geq Cu^{m-1}$ suffices to prove the uniqueness and global existence of solutions along with their boundedness if $D(0)>0$ and $m>1+\frac{(n-2)(n-1)}{n^2}$ which is a very different result from what we know about the same system with nonnegative sensitivity. In the case of degenerate diffusion ($D(0) = 0$) and for the same parameters, locally bounded global weak solutions will be established.
Citation: |
N. Bellomo
, A. Belloquid
, Y. Tao
and M. Winkler
, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015)
, 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
|
H. Brezis
and P. Mironescu
, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001)
, 387-404.
doi: 10.1007/PL00001378.![]() ![]() ![]() |
|
X. Cao
, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discr. Cont. Dyn. Syst. A, 35 (2005)
, 1891-1904.
doi: 10.3934/dcds.2015.35.1891.![]() ![]() ![]() |
|
T. Cieślak
, Quasilinear nonuniformly parabolic system modeling chemotaxis, J. Math. Anal. Appl., 326 (2007)
, 1410-1426.
doi: 10.1016/j.jmaa.2006.03.080.![]() ![]() ![]() |
|
T. Cieślak
and C. Stinner
, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel systems in higher dimensions, J. Math. Anal. Appl., 326 (2007)
, 1410-1426.
doi: 10.1016/j.jde.2012.01.045.![]() ![]() ![]() |
|
T. Cieślak
and C. Stinner
, New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models, J. Differ. Eq., 258 (2015)
, 2080-2113.
doi: 10.1016/j.jde.2014.12.004.![]() ![]() ![]() |
|
T. Cieślak
, P. Laurençot
and C. Morales-Rodrigo
, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publications, 81 (2008)
, 105-117.
doi: 10.4064/bc81-0-7.![]() ![]() ![]() |
|
X., Fu, L. H. Tang, C. Liu, J. D. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102.
![]() |
|
K. Fujie
, A. Ito
, M. Winkler
and T. Yokota
, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016)
, 151-169.
doi: 10.3934/dcds.2016.36.151.![]() ![]() ![]() |
|
H. Gajewski
and K. Zacharias
, Global behaviour of a reaction diffusion system modelling chemotaxis, Math. Nachr., 195 (1998)
, 77-114.
doi: 10.1002/mana.19981950106.![]() ![]() ![]() |
|
M. A. Herrero
and J. J. L. Velázquez
, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997)
, 633-683.
![]() ![]() |
|
T. Hillen
and K. J. Painter
, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002)
, 501-543.
![]() ![]() |
|
T. Hillen
and K. J. Painter
, A user's guide to PDE models for chemotaxis, J. Math Biol., 58 (2009)
, 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
|
D. Horstmann
and G. Wang
, Blow-up in a chemotaxis model without symmetry assumptions, Eur J. Appl. Math., 12 (2001)
, 159-177.
doi: 10.1017/S0956792501004363.![]() ![]() ![]() |
|
D. Horstmann
and M. Winkler
, Boundedness vs! blow-up in a chemotaxis system, Journal of Differential Equations, 215 (2015)
, 52-107.
doi: 10.1016/j.jde.2004.10.022.![]() ![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970)
, 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
|
R. Kowalczyk
and Z. Szymańska
, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008)
, 379-398.
doi: 10.1016/j.jmaa.2008.01.005.![]() ![]() ![]() |
|
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 1968.
![]() ![]() |
|
J. Lankeit
, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, Journal of Differential Equations, 262 (2017)
, 4052-4084.
doi: 10.1016/j.jde.2016.12.007.![]() ![]() ![]() |
|
H. A. Levine
and B. D. Sleeman
, Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century, Math. Meth. Appl. Sci., 24 (2001)
, 405-426.
doi: 10.1002/mma.212.![]() ![]() ![]() |
|
J. F Leyva
, C. Málaga
and R. G. Plaza
, The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Physica A, 392 (2013)
, 5644-5662.
doi: 10.1016/j.physa.2013.07.022.![]() ![]() ![]() |
|
N. Mizoguchi
and P. Souplet
, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré C, Analyse non liné aire, 31 (2013)
, 851-875.
doi: 10.1016/j.anihpc.2013.07.007.![]() ![]() ![]() |
|
N. Mizoguchi
and M. Winkler
, Finite-time blow-up in the two-dimensional parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013)
, 748-767.
doi: 10.1016/j.matpur.2013.01.020.![]() ![]() ![]() |
|
T. Nagai
, T. Senba
and K. Yoshida
, Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, Ser. Int., 40 (1997)
, 411-433.
![]() ![]() |
|
L. Nirenberg
, An extended interpolation inequality, Annali della Scuola Normale Superiore di Pisa, Classe die Scienze 3e sé rie, 20 (1966)
, 733-737.
![]() ![]() |
|
K. Osaki
and A. Yagi
, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2011)
, 441-469.
![]() ![]() |
|
T. Senba and T. Suzuki, A quasi-linear system of chemotaxis, Abstr. Appl. Anal., 2006 (2006), Art. ID 23061, 21 pp.
doi: 10.1155/AAA/2006/23061.![]() ![]() ![]() |
|
J. Simon
, Compact sets in the space $L^p\left(0, T;B \right)$, Ann. Mat. Pura Appl., 146 (1987)
, 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
|
C. Stinner
, C. Surulescu
and A. Uatay
, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Mod. Meth. Appl. Sci., 26 (2016)
, 2163-2201.
doi: 10.1142/S021820251640011X.![]() ![]() ![]() |
|
C. Stinner
, C. Surulescu
and M. Winkler
, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014)
, 1969-2007.
doi: 10.1137/13094058X.![]() ![]() ![]() |
|
Y. Tao
, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 2705-2722.
doi: 10.3934/dcdsb.2013.18.2705.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012)
, 692-715.
doi: 10.1016/j.jde.2011.08.019.![]() ![]() ![]() |
|
I. Tuval
, L. Cisneros
, C. Dombrowski
, C. W. Wohlgemuth
, J. O. Kessler
and R. E. Goldstein
, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Accad. Sci. USA, 102 (2005)
, 2277-2282.
doi: 10.1073/pnas.0406724102.![]() ![]() |
|
M. Winkler
, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010)
, 1664-1673.
doi: 10.1002/mana.200810838.![]() ![]() ![]() |
|
M. Winkler
, Does a volume-filling effect always prevent chemotactic collapse?, Math. Meth. Appl. Sci., 33 (2010)
, 12-24.
doi: 10.1002/mma.1146.![]() ![]() ![]() |
|
M. Winkler
, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Jornal of Differential Equations, 248 (2010)
, 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
|
D. Wrzosek
, Volume filling effect in modelling chemotaxis, Math. Mod. Nat. Phenom., 5 (2010)
, 123-147.
doi: 10.1051/mmnp/20105106.![]() ![]() ![]() |