December  2018, 38(12): 6195-6214. doi: 10.3934/dcds.2018266

Minimizing fractional harmonic maps on the real line in the supercritical regime

1. 

Université Paris Diderot, Lab. J.L.Lions (CNRS UMR 7598), Paris, France

2. 

Johns Hopkins University, Department of Mathematics, Baltimore, USA

3. 

Columbia University, Department of Mathematics, New York, USA

Dedicated to Rafael de la Llave on the occasion of his 60th birthday with admiration and friendship

Received  October 2017 Revised  April 2018 Published  September 2018

This article addresses the regularity issue for minimizing fractional harmonic maps of order s∈(0, 1/2) from an interval into a smooth manifold. Hölder continuity away from a locally finite set is established for a general target. If the target is the standard sphere, then Hölder continuity holds everywhere.

Citation: Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266
References:
[1]

F. Bethuel, On the singular set of stationary harmonic maps, Manuscr. Math., 78 (1993), 417-443.  doi: 10.1007/BF02599324.

[2]

L. A. CaffarelliJ. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.  doi: 10.1002/cpa.20331.

[3]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[4]

F. Da Lio and T. Rivière, Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, 4 (2011), 149-190.  doi: 10.2140/apde.2011.4.149.

[5]

F. Da Lio and T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., 227 (2011), 1300-1348.  doi: 10.1016/j.aim.2011.03.011.

[6]

F. Duzaar and K. Steffen, A partial regularity theorem for harmonic maps at a free boundary, Asymptotic Anal., 2 (1989), 299-343. 

[7]

L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal., 116 (1991), 101-113.  doi: 10.1007/BF00375587.

[8]

E. B. FabesC. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.  doi: 10.1080/03605308208820218.

[9]

R. Hardt and F. H. Lin, Mappings minimizing the Lp norm of the gradient, Comm. Pure Appl. Math., 15 (1987), 555-588.  doi: 10.1002/cpa.3160400503.

[10]

R. Hardt and F. H. Lin, Partially constrained boundary conditions with energy minimizing mappings, Commun. Pure Appl. Math., 42 (1989), 309-334.  doi: 10.1002/cpa.3160420306.

[11]

F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris S. I Math., 312 (1991), 591-596. 

[12]

T. Horiuchi, The imbedding theorems for weighted Sobolev spaces, J. Math. Kyoto Univ., 29 (1989), 365-403.  doi: 10.1215/kjm/1250520216.

[13]

F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, An Introduction to Geometric Measure Theory, Cambridge Studies in Adavanced Mathematics 135, Cambridge University Press, 2012. doi: 10.1017/CBO9781139108133.

[14]

V. Millot and Y. Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Rational Mech. Anal., 215 (2015), 125-210.  doi: 10.1007/s00205-014-0776-3.

[15]

V. Millot, Y. Sire and K. Wang, Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces, Archive for Rational Mechanics and Analysis, (2018), 1-8, arXiv: 1610.07194). doi: 10.1007/s00205-018-1296-3.

[16]

R. Moser, Intrinsic semiharmonic maps, J. Geom. Anal., 21 (2011), 588-598.  doi: 10.1007/s12220-010-9159-7.

[17]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differ. Geom., 17 (1982), 307-335.  doi: 10.4310/jdg/1214436923.

[18]

R. Schoen and K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math., 78 (1984), 89-100.  doi: 10.1007/BF01388715.

[19]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhaüser Verlag, Basel, 1996. doi: 10.1007/978-3-0348-9193-6.

show all references

References:
[1]

F. Bethuel, On the singular set of stationary harmonic maps, Manuscr. Math., 78 (1993), 417-443.  doi: 10.1007/BF02599324.

[2]

L. A. CaffarelliJ. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.  doi: 10.1002/cpa.20331.

[3]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[4]

F. Da Lio and T. Rivière, Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, 4 (2011), 149-190.  doi: 10.2140/apde.2011.4.149.

[5]

F. Da Lio and T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., 227 (2011), 1300-1348.  doi: 10.1016/j.aim.2011.03.011.

[6]

F. Duzaar and K. Steffen, A partial regularity theorem for harmonic maps at a free boundary, Asymptotic Anal., 2 (1989), 299-343. 

[7]

L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal., 116 (1991), 101-113.  doi: 10.1007/BF00375587.

[8]

E. B. FabesC. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.  doi: 10.1080/03605308208820218.

[9]

R. Hardt and F. H. Lin, Mappings minimizing the Lp norm of the gradient, Comm. Pure Appl. Math., 15 (1987), 555-588.  doi: 10.1002/cpa.3160400503.

[10]

R. Hardt and F. H. Lin, Partially constrained boundary conditions with energy minimizing mappings, Commun. Pure Appl. Math., 42 (1989), 309-334.  doi: 10.1002/cpa.3160420306.

[11]

F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris S. I Math., 312 (1991), 591-596. 

[12]

T. Horiuchi, The imbedding theorems for weighted Sobolev spaces, J. Math. Kyoto Univ., 29 (1989), 365-403.  doi: 10.1215/kjm/1250520216.

[13]

F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, An Introduction to Geometric Measure Theory, Cambridge Studies in Adavanced Mathematics 135, Cambridge University Press, 2012. doi: 10.1017/CBO9781139108133.

[14]

V. Millot and Y. Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Rational Mech. Anal., 215 (2015), 125-210.  doi: 10.1007/s00205-014-0776-3.

[15]

V. Millot, Y. Sire and K. Wang, Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces, Archive for Rational Mechanics and Analysis, (2018), 1-8, arXiv: 1610.07194). doi: 10.1007/s00205-018-1296-3.

[16]

R. Moser, Intrinsic semiharmonic maps, J. Geom. Anal., 21 (2011), 588-598.  doi: 10.1007/s12220-010-9159-7.

[17]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differ. Geom., 17 (1982), 307-335.  doi: 10.4310/jdg/1214436923.

[18]

R. Schoen and K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math., 78 (1984), 89-100.  doi: 10.1007/BF01388715.

[19]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhaüser Verlag, Basel, 1996. doi: 10.1007/978-3-0348-9193-6.

[1]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[2]

Manuel del Pino. Supercritical elliptic problems from a perturbation viewpoint. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 69-89. doi: 10.3934/dcds.2008.21.69

[3]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4297-4318. doi: 10.3934/dcds.2021037

[4]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[5]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[6]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[7]

Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033

[8]

Teresa Isernia, Chiara Leone, Anna Verde. Partial regularity result for non-autonomous elliptic systems with general growth. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4271-4305. doi: 10.3934/cpaa.2021160

[9]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[10]

Dina Tavares, Ricardo Almeida, Delfim F. M. Torres. Fractional Herglotz variational problems of variable order. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 143-154. doi: 10.3934/dcdss.2018009

[11]

De-Han Chen, Daijun Jiang, Irwin Yousept, Jun Zou. Addendum to: "Variational source conditions for inverse Robin and flux problems by partial measurements". Inverse Problems and Imaging, 2022, 16 (2) : 481-481. doi: 10.3934/ipi.2022003

[12]

De-Han Chen, Daijun Jiang, Irwin Yousept, Jun Zou. Variational source conditions for inverse Robin and flux problems by partial measurements. Inverse Problems and Imaging, 2022, 16 (2) : 283-304. doi: 10.3934/ipi.2021050

[13]

Serena Dipierro, Enrico Valdinoci. On a fractional harmonic replacement. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3377-3392. doi: 10.3934/dcds.2015.35.3377

[14]

Christos Gavriel, Richard Vinter. Regularity of minimizers for second order variational problems in one independent variable. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 547-557. doi: 10.3934/dcds.2011.29.547

[15]

Juan Carlos Fernández, Oscar Palmas, Jimmy Petean. Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2495-2514. doi: 10.3934/dcds.2020123

[16]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[17]

Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991

[18]

Tomas Godoy, Alfredo Guerin. Existence of nonnegative solutions to singular elliptic problems, a variational approach. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1505-1525. doi: 10.3934/dcds.2018062

[19]

Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315

[20]

Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 1-19. doi: 10.3934/dcdss.2018001

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (243)
  • HTML views (132)
  • Cited by (2)

Other articles
by authors

[Back to Top]