This article addresses the regularity issue for minimizing fractional harmonic maps of order s∈(0, 1/2) from an interval into a smooth manifold. Hölder continuity away from a locally finite set is established for a general target. If the target is the standard sphere, then Hölder continuity holds everywhere.
Citation: |
[1] |
F. Bethuel, On the singular set of stationary harmonic maps, Manuscr. Math., 78 (1993), 417-443.
doi: 10.1007/BF02599324.![]() ![]() ![]() |
[2] |
L. A. Caffarelli, J. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331.![]() ![]() ![]() |
[3] |
L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[4] |
F. Da Lio and T. Rivière, Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, 4 (2011), 149-190.
doi: 10.2140/apde.2011.4.149.![]() ![]() ![]() |
[5] |
F. Da Lio and T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., 227 (2011), 1300-1348.
doi: 10.1016/j.aim.2011.03.011.![]() ![]() ![]() |
[6] |
F. Duzaar and K. Steffen, A partial regularity theorem for harmonic maps at a free boundary, Asymptotic Anal., 2 (1989), 299-343.
![]() ![]() |
[7] |
L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal., 116 (1991), 101-113.
doi: 10.1007/BF00375587.![]() ![]() ![]() |
[8] |
E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.
doi: 10.1080/03605308208820218.![]() ![]() ![]() |
[9] |
R. Hardt and F. H. Lin, Mappings minimizing the Lp norm of the gradient, Comm. Pure Appl. Math., 15 (1987), 555-588.
doi: 10.1002/cpa.3160400503.![]() ![]() ![]() |
[10] |
R. Hardt and F. H. Lin, Partially constrained boundary conditions with energy minimizing mappings, Commun. Pure Appl. Math., 42 (1989), 309-334.
doi: 10.1002/cpa.3160420306.![]() ![]() ![]() |
[11] |
F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris S. I Math., 312 (1991), 591-596.
![]() ![]() |
[12] |
T. Horiuchi, The imbedding theorems for weighted Sobolev spaces, J. Math. Kyoto Univ., 29 (1989), 365-403.
doi: 10.1215/kjm/1250520216.![]() ![]() ![]() |
[13] |
F. Maggi,
Sets of Finite Perimeter and Geometric Variational Problems, An Introduction to Geometric Measure Theory, Cambridge Studies in Adavanced Mathematics 135, Cambridge University Press, 2012.
doi: 10.1017/CBO9781139108133.![]() ![]() ![]() |
[14] |
V. Millot and Y. Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Rational Mech. Anal., 215 (2015), 125-210.
doi: 10.1007/s00205-014-0776-3.![]() ![]() ![]() |
[15] |
V. Millot, Y. Sire and K. Wang, Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces, Archive for Rational Mechanics and Analysis, (2018), 1-8, arXiv: 1610.07194).
doi: 10.1007/s00205-018-1296-3.![]() ![]() |
[16] |
R. Moser, Intrinsic semiharmonic maps, J. Geom. Anal., 21 (2011), 588-598.
doi: 10.1007/s12220-010-9159-7.![]() ![]() ![]() |
[17] |
R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differ. Geom., 17 (1982), 307-335.
doi: 10.4310/jdg/1214436923.![]() ![]() ![]() |
[18] |
R. Schoen and K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math., 78 (1984), 89-100.
doi: 10.1007/BF01388715.![]() ![]() ![]() |
[19] |
L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhaüser Verlag, Basel, 1996.
doi: 10.1007/978-3-0348-9193-6.![]() ![]() ![]() |