- Previous Article
- DCDS Home
- This Issue
-
Next Article
Attractors for model of polymer solutions motion
Weak solvability of fractional Voigt model of viscoelasticity
Laboratory of Mathematical Fluid Dynamics, Voronezh State University, Universitetskaya pl., 1, Voronezh 394 018, Russia |
In the present paper we establish the existence of weak solutions to one fractional Voigt type model of viscoelastic fluid. This model takes into account a memory along the motion trajectories. The investigation is based on the theory of regular Lagrangean flows, approximation of the problem under consideration by a sequence of regularized Navier-Stokes systems and the following passage to the limit.
References:
[1] |
L. Ambrosio,
Transport equation and Cauchy problem for $BV$ vector fields, Invent. Math., 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[2] |
M. Caputo and F. Mainardi,
Linear models of dissipation in inelastic solidss, La Rivista del Nuovo Cimento, 1 (1971), 161-198.
doi: 10.1007/BF02820620. |
[3] |
M. Caputo and F. Mainardi,
A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), 134-147.
doi: 10.1007/BF00879562. |
[4] |
D. Cordoba, C. Fefferman and R. de la Llave,
On squirt singularities in hydrodynamics, SIAM J. Math. Anal., 36 (2000), 204-213.
doi: 10.1137/S0036141003424095. |
[5] |
G. Crippa and C. de Lellis,
The regularity results for diPernaions flow, J. Reine Angew. Math., 616 (2008), 15-46.
doi: 10.1515/CRELLE.2008.016. |
[6] |
G. Crippa,
Ordinary differential equations with non-Lipschitz vector fields, Boll. Union Mat. Ital., 1 (2008), 333-348.
|
[7] |
R. J. DiPerna and P. L. Lions,
Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.
doi: 10.1007/BF01393835. |
[8] |
A. N. Gerasimov,
A generalization of linear laws of deformation and its application to objectives of internal friction, Prikl. Mat. Mech., 12 (1948), 251-260.
|
[9] |
I. Gyarmati,
Non-equilibrium Thermodynamics, Field Theory and Variational Principles, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
doi: 10.1007/978-3-642-51067-0. |
[10] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Vol. 204, Elsevier, Amsterdam, 2006. |
[11] |
R. de la Llave and R. Obaya,
Regularity of the composition operator in spaces of H$\rmö$lder functions, Discrete Contin. Dyn. Syst. Ser. A, 5 (1999), 157-184.
|
[12] |
F. Mainardi and G. Spada,
Creep, relaxation and viscosity for basic fractional models in rheology, Eur. Phys. J. Spec. Top., 193 (2011), 133-160.
doi: 10.1140/epjst/e2011-01387-1. |
[13] |
E. N. Ogorodnikov, V. P. Radchenko and N. S. Yashagin,
Rheological model the viscoelastic body with memory and differential equations of fractional oscillators, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 22 (2011), 255-268.
|
[14] |
V. P. Orlov and P. E. Sobolevskii,
On mathematical model of viscoelasticity with a memory, Differ. Integral Equ., 4 (1991), 103-115.
|
[15] |
A. P. Oskolkov,
On some quasilinears systems occuring in studing of motion of viscous fluids, Zap. Nauchn. Sem. LOMI, 52 (1975), 128-157.
|
[16] |
S. G. Samko, A. A. Kilbas and O. I. Marichev,
Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka I Tekhnika, Minsk, 1987. |
[17] |
G. Scott-Blair,
Survey of General and Applied Rheology, 2$^{nd}$ edition, Isaac Pitman and Sons, London, 1949. |
[18] |
P. E. Sobolewskii,
On equations of parabolic type in a Banach space, Trans. Moscow Math. Soc., 10 (1961), 297-350.
|
[19] |
R. Temam,
Navier-Stokes Equation, North Holland Publishing Company, Amsterdam-New York-Oxford, 1979. |
[20] |
V. G. Zvyagin and V. T. Dmitrienko, On weak solutions of regularized model of a viscoelastic fluid, (Russian)Dokl. Akad. Nauk, 380 (2001), 308-311.
doi: 10.1023/A:1023860129831. |
[21] |
V. G. Zvyagin and V. T. Dmitrienko,
On weak solutions of an initial-boundary value problem for the equation of motion of a viscoelastic fluid, Dokl. Math., 64 (2001), 190-193.
|
[22] |
V. G. Zvyagin and M. V. Turbin,
The study of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids, J. Math. Sci., 168 (2010), 157-308.
doi: 10.1007/s10958-010-9981-2. |
[23] |
V. G. Zvyagin and D. A. Vorotnikov,
Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter, Berlin-New York, 2008.
doi: 10.1515/9783110208283. |
show all references
References:
[1] |
L. Ambrosio,
Transport equation and Cauchy problem for $BV$ vector fields, Invent. Math., 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[2] |
M. Caputo and F. Mainardi,
Linear models of dissipation in inelastic solidss, La Rivista del Nuovo Cimento, 1 (1971), 161-198.
doi: 10.1007/BF02820620. |
[3] |
M. Caputo and F. Mainardi,
A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), 134-147.
doi: 10.1007/BF00879562. |
[4] |
D. Cordoba, C. Fefferman and R. de la Llave,
On squirt singularities in hydrodynamics, SIAM J. Math. Anal., 36 (2000), 204-213.
doi: 10.1137/S0036141003424095. |
[5] |
G. Crippa and C. de Lellis,
The regularity results for diPernaions flow, J. Reine Angew. Math., 616 (2008), 15-46.
doi: 10.1515/CRELLE.2008.016. |
[6] |
G. Crippa,
Ordinary differential equations with non-Lipschitz vector fields, Boll. Union Mat. Ital., 1 (2008), 333-348.
|
[7] |
R. J. DiPerna and P. L. Lions,
Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.
doi: 10.1007/BF01393835. |
[8] |
A. N. Gerasimov,
A generalization of linear laws of deformation and its application to objectives of internal friction, Prikl. Mat. Mech., 12 (1948), 251-260.
|
[9] |
I. Gyarmati,
Non-equilibrium Thermodynamics, Field Theory and Variational Principles, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
doi: 10.1007/978-3-642-51067-0. |
[10] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Vol. 204, Elsevier, Amsterdam, 2006. |
[11] |
R. de la Llave and R. Obaya,
Regularity of the composition operator in spaces of H$\rmö$lder functions, Discrete Contin. Dyn. Syst. Ser. A, 5 (1999), 157-184.
|
[12] |
F. Mainardi and G. Spada,
Creep, relaxation and viscosity for basic fractional models in rheology, Eur. Phys. J. Spec. Top., 193 (2011), 133-160.
doi: 10.1140/epjst/e2011-01387-1. |
[13] |
E. N. Ogorodnikov, V. P. Radchenko and N. S. Yashagin,
Rheological model the viscoelastic body with memory and differential equations of fractional oscillators, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 22 (2011), 255-268.
|
[14] |
V. P. Orlov and P. E. Sobolevskii,
On mathematical model of viscoelasticity with a memory, Differ. Integral Equ., 4 (1991), 103-115.
|
[15] |
A. P. Oskolkov,
On some quasilinears systems occuring in studing of motion of viscous fluids, Zap. Nauchn. Sem. LOMI, 52 (1975), 128-157.
|
[16] |
S. G. Samko, A. A. Kilbas and O. I. Marichev,
Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka I Tekhnika, Minsk, 1987. |
[17] |
G. Scott-Blair,
Survey of General and Applied Rheology, 2$^{nd}$ edition, Isaac Pitman and Sons, London, 1949. |
[18] |
P. E. Sobolewskii,
On equations of parabolic type in a Banach space, Trans. Moscow Math. Soc., 10 (1961), 297-350.
|
[19] |
R. Temam,
Navier-Stokes Equation, North Holland Publishing Company, Amsterdam-New York-Oxford, 1979. |
[20] |
V. G. Zvyagin and V. T. Dmitrienko, On weak solutions of regularized model of a viscoelastic fluid, (Russian)Dokl. Akad. Nauk, 380 (2001), 308-311.
doi: 10.1023/A:1023860129831. |
[21] |
V. G. Zvyagin and V. T. Dmitrienko,
On weak solutions of an initial-boundary value problem for the equation of motion of a viscoelastic fluid, Dokl. Math., 64 (2001), 190-193.
|
[22] |
V. G. Zvyagin and M. V. Turbin,
The study of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids, J. Math. Sci., 168 (2010), 157-308.
doi: 10.1007/s10958-010-9981-2. |
[23] |
V. G. Zvyagin and D. A. Vorotnikov,
Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter, Berlin-New York, 2008.
doi: 10.1515/9783110208283. |
[1] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[2] |
Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873 |
[3] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[4] |
Hua Qiu, Shaomei Fang. A BKM's criterion of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2014, 13 (2) : 823-833. doi: 10.3934/cpaa.2014.13.823 |
[5] |
Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211 |
[6] |
Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116 |
[7] |
Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357 |
[8] |
Shaoqiang Shang, Yunan Cui. Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces. Electronic Research Archive, 2020, 28 (1) : 327-346. doi: 10.3934/era.2020019 |
[9] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[10] |
Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375 |
[11] |
A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375 |
[12] |
Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657 |
[13] |
Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001 |
[14] |
Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865 |
[15] |
Jeremy LeCrone, Yuanzhen Shao, Gieri Simonett. The surface diffusion and the Willmore flow for uniformly regular hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3503-3524. doi: 10.3934/dcdss.2020242 |
[16] |
Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843 |
[17] |
Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic and Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765 |
[18] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[19] |
Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 |
[20] |
Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]