
-
Previous Article
Combined effects of the spatial heterogeneity and the functional response
- DCDS Home
- This Issue
- Next Article
Markov-Dyck shifts, neutral periodic points and topological conjugacy
1. | Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany |
2. | Department of Mathematics, Joetsu University of Education, Joetsu 943 - 8512, Japan |
We study the neutral periodic points of Markov-Dyck shifts of finite strongly connected directed graphs. Under certain hypothesis on the structure of the graphs $G$ we show, that the topological conjugacy of their Markov-Dyck shifts implies the isomorphism of the graphs.
References:
[1] |
A. Costa and B. Steinberg,
A categorical invariant of flow equivalence of shifts, Ergod. Th. & Dynam. Sys., 36 (2016), 470-513.
doi: 10.1017/etds.2014.74. |
[2] |
G. Gordon and E. McMahon,
A greedoid polynomial which distinguishes rooted arborescences, Proc. AMS., 107 (1989), 287-298.
doi: 10.1090/S0002-9939-1989-0967486-0. |
[3] |
T. Hamachi and K. Inoue,
Embeddings of shifts of finite type into the Dyck shift, Monatsh. Math., 145 (2005), 107-129.
doi: 10.1007/s00605-004-0297-5. |
[4] |
T. Hamachi, K. Inoue and W. Krieger,
Subsystems of finite type and semigroup invariants of subshifts, J. reine angew. Math., 632 (2009), 37-61.
doi: 10.1515/CRELLE.2009.049. |
[5] |
T. Hamachi and W. Krieger, A construction of subshifts and a class of semigroups,
arXiv: 1303.4158 [math.DS] |
[6] |
B. P. Kitchens, Symbolic Dynamics, Springer, Berlin, Heidelberg, New York, 1998. |
[7] |
W. Krieger,
On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104.
doi: 10.1007/BF01762180. |
[8] |
W. Krieger,
On a syntactically defined invariant of symbolic dynamics, Ergod. Th. & Dynam.Sys, 10 (2000), 501-506.
doi: 10.1017/S0143385700000249. |
[9] |
W. Krieger,
On subshifts and semigroups, Bull. London Math. Soc., 38 (2006), 617-624.
doi: 10.1112/S0024609306018625. |
[10] |
W. Krieger,
On flow equivalence of R-graph shifts, Münster J. Math., 8 (2015), 229-239.
|
[11] |
W. Krieger,
On subshift presentations, Ergod. Th. & Dynam. Sys, 37 (2017), 1253-1290.
doi: 10.1017/etds.2015.82. |
[12] |
W. Krieger and K. Matsumoto,
Zeta functions and topological entropy of the Markov-Dyck shifts, Münster J. Math., 4 (2011), 171-184.
|
[13] |
W. Krieger and K. Matsumoto,
A notion of synchronization of symbolic dynamics and a class of C*-algebras, Acta Appl. Math., 126 (2013), 263-275.
doi: 10.1007/s10440-013-9817-4. |
[14] |
M. V. Lawson, Inverse Semigroups, World Scientific, Sigapure, New Jersey, London and Hong
Kong, 1998.
doi: 10.1142/9789812816689. |
[15] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge
University Press, Cambridge, 1995. |
[16] |
K. Matsumoto,
C*-algebras arising from Dyck systems of topological Markov chains, Math. Scand., 109 (2011), 31-54.
doi: 10.7146/math.scand.a-15176. |
[17] |
K. Matsumoto,
A certain synchronizing property of subshifts and flow equivalence, Israel J. Math., 196 (2013), 235-272.
doi: 10.1007/s11856-012-0159-0. |
[18] |
M. Nivat and J.-F. Perrot,
Une généralisation du monoîde bicyclique, C. R. Acad. Sc. Paris, 271 (1970), 824-827.
|
[19] |
D. Perrin, Algebraic combinatorics on words, Algebraic Combinatorics and Computer Science, H.Crapo, G.-C.Rota, Eds. Springer, 2001, 391-427. |
show all references
References:
[1] |
A. Costa and B. Steinberg,
A categorical invariant of flow equivalence of shifts, Ergod. Th. & Dynam. Sys., 36 (2016), 470-513.
doi: 10.1017/etds.2014.74. |
[2] |
G. Gordon and E. McMahon,
A greedoid polynomial which distinguishes rooted arborescences, Proc. AMS., 107 (1989), 287-298.
doi: 10.1090/S0002-9939-1989-0967486-0. |
[3] |
T. Hamachi and K. Inoue,
Embeddings of shifts of finite type into the Dyck shift, Monatsh. Math., 145 (2005), 107-129.
doi: 10.1007/s00605-004-0297-5. |
[4] |
T. Hamachi, K. Inoue and W. Krieger,
Subsystems of finite type and semigroup invariants of subshifts, J. reine angew. Math., 632 (2009), 37-61.
doi: 10.1515/CRELLE.2009.049. |
[5] |
T. Hamachi and W. Krieger, A construction of subshifts and a class of semigroups,
arXiv: 1303.4158 [math.DS] |
[6] |
B. P. Kitchens, Symbolic Dynamics, Springer, Berlin, Heidelberg, New York, 1998. |
[7] |
W. Krieger,
On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104.
doi: 10.1007/BF01762180. |
[8] |
W. Krieger,
On a syntactically defined invariant of symbolic dynamics, Ergod. Th. & Dynam.Sys, 10 (2000), 501-506.
doi: 10.1017/S0143385700000249. |
[9] |
W. Krieger,
On subshifts and semigroups, Bull. London Math. Soc., 38 (2006), 617-624.
doi: 10.1112/S0024609306018625. |
[10] |
W. Krieger,
On flow equivalence of R-graph shifts, Münster J. Math., 8 (2015), 229-239.
|
[11] |
W. Krieger,
On subshift presentations, Ergod. Th. & Dynam. Sys, 37 (2017), 1253-1290.
doi: 10.1017/etds.2015.82. |
[12] |
W. Krieger and K. Matsumoto,
Zeta functions and topological entropy of the Markov-Dyck shifts, Münster J. Math., 4 (2011), 171-184.
|
[13] |
W. Krieger and K. Matsumoto,
A notion of synchronization of symbolic dynamics and a class of C*-algebras, Acta Appl. Math., 126 (2013), 263-275.
doi: 10.1007/s10440-013-9817-4. |
[14] |
M. V. Lawson, Inverse Semigroups, World Scientific, Sigapure, New Jersey, London and Hong
Kong, 1998.
doi: 10.1142/9789812816689. |
[15] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge
University Press, Cambridge, 1995. |
[16] |
K. Matsumoto,
C*-algebras arising from Dyck systems of topological Markov chains, Math. Scand., 109 (2011), 31-54.
doi: 10.7146/math.scand.a-15176. |
[17] |
K. Matsumoto,
A certain synchronizing property of subshifts and flow equivalence, Israel J. Math., 196 (2013), 235-272.
doi: 10.1007/s11856-012-0159-0. |
[18] |
M. Nivat and J.-F. Perrot,
Une généralisation du monoîde bicyclique, C. R. Acad. Sc. Paris, 271 (1970), 824-827.
|
[19] |
D. Perrin, Algebraic combinatorics on words, Algebraic Combinatorics and Computer Science, H.Crapo, G.-C.Rota, Eds. Springer, 2001, 391-427. |




[1] |
Kengo Matsumoto. On the Markov-Dyck shifts of vertex type. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 403-422. doi: 10.3934/dcds.2016.36.403 |
[2] |
Matthieu Arfeux, Jan Kiwi. Topological cubic polynomials with one periodic ramification point. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1799-1811. doi: 10.3934/dcds.2020094 |
[3] |
Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264 |
[4] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[5] |
James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353 |
[6] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[7] |
Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144 |
[8] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[9] |
David Burguet, Ruxi Shi. Zero-dimensional and symbolic extensions of topological flows. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1105-1126. doi: 10.3934/dcds.2021148 |
[10] |
James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209 |
[11] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[12] |
Jim Wiseman. Symbolic dynamics from signed matrices. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621 |
[13] |
George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43 |
[14] |
Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301 |
[15] |
Fritz Colonius, Alexandre J. Santana. Topological conjugacy for affine-linear flows and control systems. Communications on Pure and Applied Analysis, 2011, 10 (3) : 847-857. doi: 10.3934/cpaa.2011.10.847 |
[16] |
Ming-Chia Li, Ming-Jiea Lyu. Topological conjugacy for Lipschitz perturbations of non-autonomous systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5011-5024. doi: 10.3934/dcds.2016017 |
[17] |
Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094 |
[18] |
Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103 |
[19] |
Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847 |
[20] |
Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]