
-
Previous Article
The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas
- DCDS Home
- This Issue
-
Next Article
Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$
Core entropy of polynomials with a critical point of maximal order
División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa Km 1, Cunduacán Tabasco, México |
This paper discusses some properties of the topological entropy of the systems generated by polynomials of degree $ d$ with two critical points. A partial order in the parameter space is defined. The monotonicity of the topological entropy of postcritically finite polynomials of degree $ d$ acting on Hubbard tree is generalized.
References:
[1] |
L. S. Block and W. A. Coppel,
Dynamics in One Dimension, Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992.
doi: 10.1007/BFb0084762. |
[2] |
L. Carleson and T. W. Gamelin,
Complex Dynamics,
(English summary), Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4364-9. |
[3] |
A. Douady, Algorithms for computing angles in the Mandelbort set, Chaotic dynamics and fractals (Atlanta, Ga. 1985), Notes Rep. Math. Sci. Engrg. 2, Academic Press, Orlando, FL, (1986), 155-168. |
[4] |
A. Douady, Topological entropy of unimodal maps: Monotonicity for quadratic polynomials. Real and Complex Dynamical Systems (Hiller$ \oslash $d, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, (1995), 65-87. |
[5] |
A. Douady and J. H. Hubbard,
Étude Dynamique des Polynômes Complexes, Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], 84-2. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. |
[6] |
A. Douady and J. H. Hubbard,
On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18 (1985), 287-343.
doi: 10.24033/asens.1491. |
[7] |
A. Kaffl,
Trees and Kneading Sequences for Unicritical and Cubic Polynomials, Ph.D. thesis, International University Bremen, 2007. |
[8] |
T. Li, A monotonicity conjecture for the entropy of Hubbard trees, Thesis (Ph.D.)-State University of New York at Stony Brook. ProQuest LLC, Ann Arbor, MI, 2007. |
[9] |
M. Lyubich,
Dynamics of quadratic polynomials Ⅰ-Ⅱ, Acta Math, 178 (1997), 185-297.
doi: 10.1007/BF02392694. |
[10] |
J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅰ. Complex dynamics, A K Peters, Wellesley, MA, (2009), 333-411.
doi: 10.1201/b10617-13. |
[11] |
J. Milnor, Periodic orbits, external rays and the mandelbrot set, Geometrie Complexe et Systemes Dynamiques, Astérisque, 261 (2000), 277-333 [Stony Brook IMS Preprint 1999 3]. |
[12] |
J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical systems, (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, (1988), 465-563.
doi: 10.1007/BFb0082847. |
[13] |
J. Milnor and Ch. Tresser,
On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac, Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[14] |
A. Poirier,
Hubbard trees, Fundamenta Mathematicae, 208 (2010), 193-248.
doi: 10.4064/fm208-3-1. |
[15] |
A. Radulescu,
The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.
doi: 10.3934/dcds.2007.19.139. |
[16] |
P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, (English, French summary) Ann. Sci. École Norm. Sup., 40 (2007), 901-949.
doi: 10.1016/j.ansens.2007.10.001. |
[17] |
W. P. Thurston, On geometry and dynamics of iterated Rational Maps. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. Complex Dynamics, A K Peters, Wellesley, MA, (2009), 3-137.
doi: 10.1201/b10617-3. |
[18] |
G. Tiozzo, Entropy, dimension and combinatorial moduli for one-dimensional dynamical systems, Thesis (Ph.D.)-Harvard University. ProQuest LLC, Ann Arbor, MI, 2013. |
[19] |
G. Tiozzo,
Continuity of core entropy of quadratic polynomials, Invent. Math., 203 (2016), 891-921.
doi: 10.1007/s00222-015-0605-9. |
[20] |
S. Zakeri,
Biaccessibility in quadratic Julia Sets, Ergodic Theory Dynam. Systems, 20 (2000), 1859-1883.
doi: 10.1017/S0143385700001024. |
show all references
References:
[1] |
L. S. Block and W. A. Coppel,
Dynamics in One Dimension, Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992.
doi: 10.1007/BFb0084762. |
[2] |
L. Carleson and T. W. Gamelin,
Complex Dynamics,
(English summary), Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4364-9. |
[3] |
A. Douady, Algorithms for computing angles in the Mandelbort set, Chaotic dynamics and fractals (Atlanta, Ga. 1985), Notes Rep. Math. Sci. Engrg. 2, Academic Press, Orlando, FL, (1986), 155-168. |
[4] |
A. Douady, Topological entropy of unimodal maps: Monotonicity for quadratic polynomials. Real and Complex Dynamical Systems (Hiller$ \oslash $d, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, (1995), 65-87. |
[5] |
A. Douady and J. H. Hubbard,
Étude Dynamique des Polynômes Complexes, Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], 84-2. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. |
[6] |
A. Douady and J. H. Hubbard,
On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18 (1985), 287-343.
doi: 10.24033/asens.1491. |
[7] |
A. Kaffl,
Trees and Kneading Sequences for Unicritical and Cubic Polynomials, Ph.D. thesis, International University Bremen, 2007. |
[8] |
T. Li, A monotonicity conjecture for the entropy of Hubbard trees, Thesis (Ph.D.)-State University of New York at Stony Brook. ProQuest LLC, Ann Arbor, MI, 2007. |
[9] |
M. Lyubich,
Dynamics of quadratic polynomials Ⅰ-Ⅱ, Acta Math, 178 (1997), 185-297.
doi: 10.1007/BF02392694. |
[10] |
J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅰ. Complex dynamics, A K Peters, Wellesley, MA, (2009), 333-411.
doi: 10.1201/b10617-13. |
[11] |
J. Milnor, Periodic orbits, external rays and the mandelbrot set, Geometrie Complexe et Systemes Dynamiques, Astérisque, 261 (2000), 277-333 [Stony Brook IMS Preprint 1999 3]. |
[12] |
J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical systems, (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, (1988), 465-563.
doi: 10.1007/BFb0082847. |
[13] |
J. Milnor and Ch. Tresser,
On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac, Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[14] |
A. Poirier,
Hubbard trees, Fundamenta Mathematicae, 208 (2010), 193-248.
doi: 10.4064/fm208-3-1. |
[15] |
A. Radulescu,
The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.
doi: 10.3934/dcds.2007.19.139. |
[16] |
P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, (English, French summary) Ann. Sci. École Norm. Sup., 40 (2007), 901-949.
doi: 10.1016/j.ansens.2007.10.001. |
[17] |
W. P. Thurston, On geometry and dynamics of iterated Rational Maps. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. Complex Dynamics, A K Peters, Wellesley, MA, (2009), 3-137.
doi: 10.1201/b10617-3. |
[18] |
G. Tiozzo, Entropy, dimension and combinatorial moduli for one-dimensional dynamical systems, Thesis (Ph.D.)-Harvard University. ProQuest LLC, Ann Arbor, MI, 2013. |
[19] |
G. Tiozzo,
Continuity of core entropy of quadratic polynomials, Invent. Math., 203 (2016), 891-921.
doi: 10.1007/s00222-015-0605-9. |
[20] |
S. Zakeri,
Biaccessibility in quadratic Julia Sets, Ergodic Theory Dynam. Systems, 20 (2000), 1859-1883.
doi: 10.1017/S0143385700001024. |

[1] |
Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85 |
[2] |
Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487 |
[3] |
Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3135-3152. doi: 10.3934/dcds.2013.33.3135 |
[4] |
Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127 |
[5] |
Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451 |
[6] |
Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225 |
[7] |
Jianxun Fu, Song Zhang. A new type of non-landing exponential rays. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4179-4196. doi: 10.3934/dcds.2020177 |
[8] |
Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511 |
[9] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
[10] |
Luna Lomonaco, Carsten Lunde Petersen, Weixiao Shen. On parabolic external maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5085-5104. doi: 10.3934/dcds.2017220 |
[11] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[12] |
Vincent Delecroix. Divergent trajectories in the periodic wind-tree model. Journal of Modern Dynamics, 2013, 7 (1) : 1-29. doi: 10.3934/jmd.2013.7.1 |
[13] |
Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83 |
[14] |
Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks and Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405 |
[15] |
Wenxiu Gong, Zuoliang Xu. An alternative tree method for calibration of the local volatility. Journal of Industrial and Management Optimization, 2022, 18 (1) : 137-156. doi: 10.3934/jimo.2020146 |
[16] |
Núria Fagella, David Martí-Pete. Dynamic rays of bounded-type transcendental self-maps of the punctured plane. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3123-3160. doi: 10.3934/dcds.2017134 |
[17] |
Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191 |
[18] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[19] |
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 |
[20] |
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]