January  2019, 39(1): 263-275. doi: 10.3934/dcds.2019011

Double minimality, entropy and disjointness with all minimal systems

1. 

AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland

2. 

National Supercomputing Centre IT4Innovations, Division of the University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 70103 Ostrava, Czech Republic

Received  December 2017 Revised  July 2018 Published  October 2018

In this paper we propose a new sufficient condition for disjointness with all minimal systems.

Using proposed approach we construct a transitive dynamical system $(X,T)$ disjoint with every minimal system and such that the set of transfer times $N(x,U)$ is not an $\text{IP}^*$-set for some nonempty open set $U\subset X$ and every $x∈ X$. This example shows that the new condition sharpens sufficient conditions for disjointness below previous bounds. In particular our approach does not rely on distality of points or sets.

Citation: Piotr Oprocha. Double minimality, entropy and disjointness with all minimal systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 263-275. doi: 10.3934/dcds.2019011
References:
[1]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.  doi: 10.1088/0951-7715/16/4/313.

[2]

F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993), 465-478.  doi: 10.24033/bsmf.2216.

[3]

F. BlanchardB. Host and S. Ruette, Asymptotic pairs in positive-entropy systems, Ergodic Theory Dynam. Systems, 22 (2002), 671-686.  doi: 10.1017/S0143385702000342.

[4]

P. DongS. Shao and X. Ye, Product recurrent properties, disjointness and weak disjointness, Israel J. Math., 188 (2012), 463-507.  doi: 10.1007/s11856-011-0128-z.

[5]

F. FalniowskiM. KulczyckiD. Kwietniak and J. Li, Two results on entropy, chaos and independence in symbolic dynamics, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3487-3505.  doi: 10.3934/dcdsb.2015.20.3487.

[6]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.

[7]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981.

[8]

H. FurstenbergH. Keynes and L. Shapiro, Prime flows in topological dynamics, Israel J. Math., 14 (1973), 26-38.  doi: 10.1007/BF02761532.

[9]

E. Glanser and B. Weiss, On the interplay between measurable and topological dynamics, Handbook of Dynamical Systems, vol. 1B, Elsevier, (2006), 597-648. doi: 10.1016/S1874-575X(06)80035-4.

[10]

E. Glanser and B. Weiss, On doubly minimal systems and a question regarding product recurrence, preprint, arXiv: 1508.02817, 2015.

[11]

C. Grillenberger, Constructions of strictly ergodic systems. Ⅱ. K-Systems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25 (1972/73), 335-342.  doi: 10.1007/BF00537162.

[12]

K. Haddad and W. Ott, Recurrence in pairs, Ergodic Theory Dynam. Systems, 28 (2008), 1135-1143.  doi: 10.1017/S0143385707000600.

[13]

W. Huang and X. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005), 669-694.  doi: 10.1090/S0002-9947-04-03540-8.

[14]

W. Huang and X. Ye, A local variational relation and applications, Israel J. Math., 151 (2006), 237-279.  doi: 10.1007/BF02777364.

[15]

W. Huang and X. Ye, A note on double minimality, Commun. Math. Stat., 3 (2015), 57-61.  doi: 10.1007/s40304-015-0051-4.

[16]

J. L. King, A map with topological minimal self-joinings in the sense of del Junco, Ergodic Theory Dynam. Systems, 10 (1990), 745-761.  doi: 10.1017/S0143385700005873.

[17]

P. Kurka, Topological and Symbolic Dynamics, Cours Spécialisés [Specialized Courses], 11. Société Mathématique de France, Paris, 2003.

[18]

J. LiK. Yan and X. Ye, Recurrence properties and disjointness on the induced spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1059-1073.  doi: 10.3934/dcds.2015.35.1059.

[19]

J. LiP. OprochaX. Ye and R. Zhang, When all closed subsets are recurrent?, Erg. Th. Dynam. Syst., 37 (2017), 2223-2254.  doi: 10.1017/etds.2016.5.

[20]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511626302.

[21]

E. Lindenstrauss, Lowering topological entropy, J. Anal. Math., 67 (1995), 231-267.  doi: 10.1007/BF02787792.

[22]

P. Oprocha, Weak mixing and product recurrence, Ann. Inst. Fourier (Grenoble), 60 (2010), 1233-1257.  doi: 10.5802/aif.2553.

[23]

P. Oprocha, Minimal systems and distributionally scrambled sets, Bull. Soc. Math. France, 140 (2012), 401-439.  doi: 10.24033/bsmf.2631.

[24]

P. Oprocha and G. Zhang, On weak product recurrence and synchronization of return times, Adv. Math., 244 (2013), 395-412.  doi: 10.1016/j.aim.2013.05.006.

[25]

K. E. Petersen, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc., 24 (1970), 278-280.  doi: 10.1090/S0002-9939-1970-0250283-7.

[26]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

[27]

B. Weiss, Multiple recurrence and doubly minimal systems, Topological Dynamics and Applications (Minneapolis, MN, 1995), 189-196, Contemp. Math., 215, Amer. Math. Soc., Providence, RI, 1998. doi: 10.1090/conm/215/02940.

show all references

References:
[1]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.  doi: 10.1088/0951-7715/16/4/313.

[2]

F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993), 465-478.  doi: 10.24033/bsmf.2216.

[3]

F. BlanchardB. Host and S. Ruette, Asymptotic pairs in positive-entropy systems, Ergodic Theory Dynam. Systems, 22 (2002), 671-686.  doi: 10.1017/S0143385702000342.

[4]

P. DongS. Shao and X. Ye, Product recurrent properties, disjointness and weak disjointness, Israel J. Math., 188 (2012), 463-507.  doi: 10.1007/s11856-011-0128-z.

[5]

F. FalniowskiM. KulczyckiD. Kwietniak and J. Li, Two results on entropy, chaos and independence in symbolic dynamics, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3487-3505.  doi: 10.3934/dcdsb.2015.20.3487.

[6]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.

[7]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981.

[8]

H. FurstenbergH. Keynes and L. Shapiro, Prime flows in topological dynamics, Israel J. Math., 14 (1973), 26-38.  doi: 10.1007/BF02761532.

[9]

E. Glanser and B. Weiss, On the interplay between measurable and topological dynamics, Handbook of Dynamical Systems, vol. 1B, Elsevier, (2006), 597-648. doi: 10.1016/S1874-575X(06)80035-4.

[10]

E. Glanser and B. Weiss, On doubly minimal systems and a question regarding product recurrence, preprint, arXiv: 1508.02817, 2015.

[11]

C. Grillenberger, Constructions of strictly ergodic systems. Ⅱ. K-Systems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25 (1972/73), 335-342.  doi: 10.1007/BF00537162.

[12]

K. Haddad and W. Ott, Recurrence in pairs, Ergodic Theory Dynam. Systems, 28 (2008), 1135-1143.  doi: 10.1017/S0143385707000600.

[13]

W. Huang and X. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005), 669-694.  doi: 10.1090/S0002-9947-04-03540-8.

[14]

W. Huang and X. Ye, A local variational relation and applications, Israel J. Math., 151 (2006), 237-279.  doi: 10.1007/BF02777364.

[15]

W. Huang and X. Ye, A note on double minimality, Commun. Math. Stat., 3 (2015), 57-61.  doi: 10.1007/s40304-015-0051-4.

[16]

J. L. King, A map with topological minimal self-joinings in the sense of del Junco, Ergodic Theory Dynam. Systems, 10 (1990), 745-761.  doi: 10.1017/S0143385700005873.

[17]

P. Kurka, Topological and Symbolic Dynamics, Cours Spécialisés [Specialized Courses], 11. Société Mathématique de France, Paris, 2003.

[18]

J. LiK. Yan and X. Ye, Recurrence properties and disjointness on the induced spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1059-1073.  doi: 10.3934/dcds.2015.35.1059.

[19]

J. LiP. OprochaX. Ye and R. Zhang, When all closed subsets are recurrent?, Erg. Th. Dynam. Syst., 37 (2017), 2223-2254.  doi: 10.1017/etds.2016.5.

[20]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511626302.

[21]

E. Lindenstrauss, Lowering topological entropy, J. Anal. Math., 67 (1995), 231-267.  doi: 10.1007/BF02787792.

[22]

P. Oprocha, Weak mixing and product recurrence, Ann. Inst. Fourier (Grenoble), 60 (2010), 1233-1257.  doi: 10.5802/aif.2553.

[23]

P. Oprocha, Minimal systems and distributionally scrambled sets, Bull. Soc. Math. France, 140 (2012), 401-439.  doi: 10.24033/bsmf.2631.

[24]

P. Oprocha and G. Zhang, On weak product recurrence and synchronization of return times, Adv. Math., 244 (2013), 395-412.  doi: 10.1016/j.aim.2013.05.006.

[25]

K. E. Petersen, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc., 24 (1970), 278-280.  doi: 10.1090/S0002-9939-1970-0250283-7.

[26]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

[27]

B. Weiss, Multiple recurrence and doubly minimal systems, Topological Dynamics and Applications (Minneapolis, MN, 1995), 189-196, Contemp. Math., 215, Amer. Math. Soc., Providence, RI, 1998. doi: 10.1090/conm/215/02940.

[1]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[2]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[3]

María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153

[4]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[5]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[6]

Marcin Studniarski. Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 389-398. doi: 10.3934/naco.2011.1.389

[7]

Tiago Carvalho, Luiz Fernando Gonçalves. A flow on $ S^2 $ presenting the ball as its minimal set. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4263-4280. doi: 10.3934/dcdsb.2020287

[8]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[9]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[10]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[11]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[12]

Lan Wen. On the preperiodic set. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[13]

François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262

[14]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[15]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

[16]

Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27

[17]

Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493

[18]

Romar dela Cruz, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. On the minimum number of minimal codewords. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020130

[19]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[20]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (349)
  • HTML views (172)
  • Cited by (2)

Other articles
by authors

[Back to Top]