In this paper we propose a new sufficient condition for disjointness with all minimal systems.
Using proposed approach we construct a transitive dynamical system $(X,T)$ disjoint with every minimal system and such that the set of transfer times $N(x,U)$ is not an $\text{IP}^*$-set for some nonempty open set $U\subset X$ and every $x∈ X$. This example shows that the new condition sharpens sufficient conditions for disjointness below previous bounds. In particular our approach does not rely on distality of points or sets.
Citation: |
E. Akin
and S. Kolyada
, Li-Yorke sensitivity, Nonlinearity, 16 (2003)
, 1421-1433.
doi: 10.1088/0951-7715/16/4/313.![]() ![]() ![]() |
|
F. Blanchard
, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993)
, 465-478.
doi: 10.24033/bsmf.2216.![]() ![]() ![]() |
|
F. Blanchard
, B. Host
and S. Ruette
, Asymptotic pairs in positive-entropy systems, Ergodic Theory Dynam. Systems, 22 (2002)
, 671-686.
doi: 10.1017/S0143385702000342.![]() ![]() ![]() |
|
P. Dong
, S. Shao
and X. Ye
, Product recurrent properties, disjointness and weak disjointness, Israel J. Math., 188 (2012)
, 463-507.
doi: 10.1007/s11856-011-0128-z.![]() ![]() ![]() |
|
F. Falniowski
, M. Kulczycki
, D. Kwietniak
and J. Li
, Two results on entropy, chaos and independence in symbolic dynamics, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 3487-3505.
doi: 10.3934/dcdsb.2015.20.3487.![]() ![]() ![]() |
|
H. Furstenberg
, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967)
, 1-49.
doi: 10.1007/BF01692494.![]() ![]() ![]() |
|
H. Furstenberg,
Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981.
![]() ![]() |
|
H. Furstenberg
, H. Keynes
and L. Shapiro
, Prime flows in topological dynamics, Israel J. Math., 14 (1973)
, 26-38.
doi: 10.1007/BF02761532.![]() ![]() ![]() |
|
E. Glanser and B. Weiss, On the interplay between measurable and topological dynamics, Handbook of Dynamical Systems, vol. 1B, Elsevier, (2006), 597-648.
doi: 10.1016/S1874-575X(06)80035-4.![]() ![]() ![]() |
|
E. Glanser and B. Weiss, On doubly minimal systems and a question regarding product recurrence, preprint, arXiv: 1508.02817, 2015.
![]() |
|
C. Grillenberger
, Constructions of strictly ergodic systems. Ⅱ. K-Systems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25 (1972/73)
, 335-342.
doi: 10.1007/BF00537162.![]() ![]() ![]() |
|
K. Haddad
and W. Ott
, Recurrence in pairs, Ergodic Theory Dynam. Systems, 28 (2008)
, 1135-1143.
doi: 10.1017/S0143385707000600.![]() ![]() ![]() |
|
W. Huang
and X. Ye
, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005)
, 669-694.
doi: 10.1090/S0002-9947-04-03540-8.![]() ![]() ![]() |
|
W. Huang
and X. Ye
, A local variational relation and applications, Israel J. Math., 151 (2006)
, 237-279.
doi: 10.1007/BF02777364.![]() ![]() ![]() |
|
W. Huang
and X. Ye
, A note on double minimality, Commun. Math. Stat., 3 (2015)
, 57-61.
doi: 10.1007/s40304-015-0051-4.![]() ![]() ![]() |
|
J. L. King
, A map with topological minimal self-joinings in the sense of del Junco, Ergodic Theory Dynam. Systems, 10 (1990)
, 745-761.
doi: 10.1017/S0143385700005873.![]() ![]() ![]() |
|
P. Kurka, Topological and Symbolic Dynamics, Cours Spécialisés [Specialized Courses], 11. Société Mathématique de France, Paris, 2003.
![]() ![]() |
|
J. Li
, K. Yan
and X. Ye
, Recurrence properties and disjointness on the induced spaces, Discrete Contin. Dyn. Syst., 35 (2015)
, 1059-1073.
doi: 10.3934/dcds.2015.35.1059.![]() ![]() ![]() |
|
J. Li
, P. Oprocha
, X. Ye
and R. Zhang
, When all closed subsets are recurrent?, Erg. Th. Dynam. Syst., 37 (2017)
, 2223-2254.
doi: 10.1017/etds.2016.5.![]() ![]() ![]() |
|
D. Lind and B. Marcus,
An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() ![]() |
|
E. Lindenstrauss
, Lowering topological entropy, J. Anal. Math., 67 (1995)
, 231-267.
doi: 10.1007/BF02787792.![]() ![]() ![]() |
|
P. Oprocha
, Weak mixing and product recurrence, Ann. Inst. Fourier (Grenoble), 60 (2010)
, 1233-1257.
doi: 10.5802/aif.2553.![]() ![]() ![]() |
|
P. Oprocha
, Minimal systems and distributionally scrambled sets, Bull. Soc. Math. France, 140 (2012)
, 401-439.
doi: 10.24033/bsmf.2631.![]() ![]() ![]() |
|
P. Oprocha
and G. Zhang
, On weak product recurrence and synchronization of return times, Adv. Math., 244 (2013)
, 395-412.
doi: 10.1016/j.aim.2013.05.006.![]() ![]() ![]() |
|
K. E. Petersen
, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc., 24 (1970)
, 278-280.
doi: 10.1090/S0002-9939-1970-0250283-7.![]() ![]() ![]() |
|
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
|
B. Weiss, Multiple recurrence and doubly minimal systems, Topological Dynamics and Applications (Minneapolis, MN, 1995), 189-196, Contemp. Math., 215, Amer. Math. Soc., Providence, RI, 1998.
doi: 10.1090/conm/215/02940.![]() ![]() ![]() |