In this paper we investigate a variational discretization for the class of mechanical systems in presence of symmetries described by the action of a Lie group which reduces the phase space to a (non-trivial) principal bundle. By introducing a discrete connection we are able to obtain the discrete constrained higher-order Lagrange-Poincaré equations. These equations describe the dynamics of a constrained Lagrangian system when the Lagrangian function and the constraints depend on higher-order derivatives such as the acceleration, jerk or jounces. The equations, under some mild regularity conditions, determine a well defined (local) flow which can be used to define a numerical scheme to integrate the constrained higher-order Lagrange-Poincaré equations.
Optimal control problems for underactuated mechanical systems can be viewed as higher-order constrained variational problems. We study how a variational discretization can be used in the construction of variational integrators for optimal control of underactuated mechanical systems where control inputs act soley on the base manifold of a principal bundle (the shape space). Examples include the energy minimum control of an electron in a magnetic field and two coupled rigid bodies attached at a common center of mass.
Citation: |
R. Benito and D. Martín de Diego, Discrete Vakonomic Mechanics, Journal of Mathematical Physics, 46 (2005), 083521, 18pp.
doi: 10.1063/1.2008214.![]() ![]() ![]() |
|
R. Benito
, M. de León
and D. Martín de Diego
, Higher-order discrete lagrangian mechanics, Int. Journal of Geometric Methods in Modern Physics, 3 (2006)
, 421-436.
doi: 10.1142/S0219887806001235.![]() ![]() ![]() |
|
A. M. Bloch, Nonholonomic Mechanics and Control, Vol. 24 of Interdisciplinary Appl. Math. Springer-Verlag, New York, 2003.
doi: 10.1007/b97376.![]() ![]() ![]() |
|
A. Bloch
, L. Colombo
, R. Gupta
and D. Martín de Diego
, A geometric approach to the optimal control of nonholonomic mechanical systems, Analysis and Geometry in Control Theory and Its Applications, 11 (2015)
, 35-64.
doi: 10.1007/978-3-319-06917-3_2.![]() ![]() ![]() |
|
A. M. Bloch
and P. E. Crouch
, Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems, Proceedings of 33rd IEEE Conference on Decision and Control, (1994)
, 2584-2590.
![]() |
|
A. M. Bloch
and P. E. Crouch
, On the equivalence of higher order variational problems and optimal control problems, Proceedings of 35rd IEEE Conference on Decision and Control, (1996)
, 1648-1653.
![]() |
|
A. Bloch
, P. Crouch
, N. Nordkvist
and A. Sanyal
, Embedded geodesic problems and optimal control for matrix Lie groups, J. Geom. Mech., 3 (2011)
, 197-223.
doi: 10.3934/jgm.2011.3.197.![]() ![]() ![]() |
|
A. M. Bloch
, I. I. Hussein
, M. Leok
and A. K. Sanyal
, Geometric structure-preserving optimal control of a rigid body, Journal of Dynamical and Control Systems, 15 (2009)
, 307-330.
doi: 10.1007/s10883-009-9071-2.![]() ![]() ![]() |
|
A. M. Bloch
, P. S. Krishnaprasad
, J. E. Marsden
and T. S. Ratiu
, The Euler-Poincaré equations and double bracket dissipation, Comm. Math. Phys., 175 (1996)
, 1-42.
doi: 10.1007/BF02101622.![]() ![]() ![]() |
|
M. Bruveris
, D. Ellis
, F. Gay-Balmaz
and D. D. Holm
, Un-reduction, Journal of Geometric Mechanics, 3 (2011)
, 363-387.
doi: 10.3934/jgm.2011.3.363.![]() ![]() ![]() |
|
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7.![]() ![]() ![]() |
|
C. Burnett, D. Holm and D. Meier, Geometric integrators for higher-order mechanics on Lie groups, Proc. R. Soc. A., 469 (2013), 20130249.
![]() |
|
J. A. Cadzow, Discrete Calculus of Variations, Int. J. Control, 11 (1970), 393-407.
![]() |
|
M. Camarinha
, F. Silva Leite
and P. E. Crouch
, Splines of class Ck on non-Euclidean spaces, IMA Journal of Mathematical Control & Information, 12 (1995)
, 399-410.
doi: 10.1093/imamci/12.4.399.![]() ![]() ![]() |
|
M. Camarinha
, F. Silva Leite
and P. Crouch
, On the geometry of Riemannian cubic polynomials, Differential Geometry and its Applications, 15 (2001)
, 107-135.
doi: 10.1016/S0926-2245(01)00054-7.![]() ![]() ![]() |
|
C. M. Campos, O. Junge and S. Ober-Blobaum, Higher Order Variational Time Discretization of Optimal Control Problems, 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne, 2012.
![]() |
|
C. M. Campos
, S. Ober-Blobaum
and E. Trelat
, High order variational integrators in the optimal control of mechanical systems, Discrete and Continuous Dynamical Systems - Series A, 359 (2015)
, 4193-4223.
doi: 10.3934/dcds.2015.35.4193.![]() ![]() ![]() |
|
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memories of the American Mathematical Society, 152 (2001), ⅹ+108 pp.
doi: 10.1090/memo/0722.![]() ![]() ![]() |
|
L. Colombo
, Second-order constrained variational problems on Lie algebroids: Applications to optimal control, Journal Geometric Mechanics, 9 (2017)
, 1-45.
doi: 10.3934/jgm.2017001.![]() ![]() ![]() |
|
L. Colombo
, R. Gupta
and A. Bloch
, Higher-order constrained variational problems on principal bundles with applications to optimal control of underactuated systems, IFAC-PapersOnLine, 48 (2015)
, 87-92.
![]() |
|
L. Colombo
, S. Ferraro
and D. Martín de Diego
, Geometric integrators for higher-order variational systems and their application to optimal control, Journal of Nonlinear Science, 26 (2016)
, 1615-1650.
doi: 10.1007/s00332-016-9314-9.![]() ![]() ![]() |
|
L. Colombo
, F. Jiménez
and D. Martín de Diego
, Variational integrators for mechanical control systems with symmetries, Journal of Computational Dynamics, 2 (2015)
, 193-225.
doi: 10.3934/jcd.2015003.![]() ![]() ![]() |
|
L. Colombo, F. Jiménez and D. Martín de Diego, Discrete Second-Order Euler-Poincaré Equations. An application to optimal control, International Journal of Geometric Methods in Modern Physics, 9(2012), 1250037, 20 pp.
doi: 10.1142/S0219887812500375.![]() ![]() ![]() |
|
L. Colombo, D. Martín de Diego and M. Zuccalli, On variational integrators for optimal control of mechanical systems, RACSAM Rev. R. Acad. Cienc. Ser A. Mat, 2011.
![]() |
|
L. Colombo
and D. Martín de Diego
, Higher-order variational problems on Lie groups and optimal control applications, J. Geom. Mech., 6 (2014)
, 451-478.
doi: 10.3934/jgm.2014.6.451.![]() ![]() ![]() |
|
L. Colombo L, D. Martín de Diego and M. Zuccalli, Higher-order variational problems with constraints, Journal of Mathematical Physics., 54 (2013), 093507, 17pp.
doi: 10.1063/1.4820817.![]() ![]() ![]() |
|
L. Colombo
and D. Martín de Diego
, Second order variational problems on Lie groupoids and optimal control applications, Discrete and Continuous Dynamical Systems-Series A, 36 (2016)
, 6023-6064.
doi: 10.3934/dcds.2016064.![]() ![]() ![]() |
|
L. Colombo and P. D. Prieto Martínez, Regularity properties of fiber derivatives associated with higher-order mechanical systems, Journal of Mathematical Physics, 57(2016), 082901, 25pp.
doi: 10.1063/1.4960822.![]() ![]() ![]() |
|
J Cortés
, M de León
, D. Martín de Diego
and S Martínez
, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM Journal on Control and Optimization, 41 (2002)
, 1389-1412.
doi: 10.1137/S036301290036817X.![]() ![]() ![]() |
|
A. Fernández
, P. García
and C. Rodrigo
, Variational integrators in discrete vakonomic mechanics, Rev. R. Acad. A, 106 (2012)
, 137-159.
doi: 10.1007/s13398-011-0030-x.![]() ![]() ![]() |
|
J. Fernández
, C. Tori
and M. Zuccalli
, Lagrangian reduction of nonholonomic discrete mechanical systems, Journal of Geometric Mechanics, 2 (2010)
, 69-111.
doi: 10.3934/jgm.2010.2.69.![]() ![]() ![]() |
|
F. Gay-Balmaz
, D. Holm
and T. Ratiu
, Higher order Lagrange-Poincaré, and Hamilton-Poincaré, reductions, Bulletin of the Brazialian Mathematical Society, 42 (2011)
, 579-606.
doi: 10.1007/s00574-011-0030-7.![]() ![]() ![]() |
|
F. Gay-Balmaz
, D. D. Holm
, D. M. Meier
, T. S. Ratiu
and F.-X. Vialard
, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012)
, 413-458.
doi: 10.1007/s00220-011-1313-y.![]() ![]() ![]() |
|
F. Gay-Balmaz
, D. D. Holm
, D. M. Meier
, T. S. Ratiu
and F.-X. Vialard
, Invariant higher-order variational problems Ⅱ, J. Nonlin. Sci., 22 (2012)
, 553-597.
doi: 10.1007/s00332-012-9137-2.![]() ![]() ![]() |
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag Berlin, 2002.
doi: 10.1007/978-3-662-05018-7.![]() ![]() ![]() |
|
D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, Oxford University Press, 2009.
![]() ![]() |
|
D. Iglesias
, JC Marrero
, D Mart n de Diego
and D Sosa
, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems, 23 (2008)
, 351-397.
doi: 10.1080/14689360802294220.![]() ![]() ![]() |
|
F. Jiménez, M. de León and D. Martín de Diego, Hamiltonian dynamics and constrained variational calculus: Continuous and discrete settings, J. Phys A, 45 (2012), 205204, 29pp.
doi: 10.1088/1751-8113/45/20/205204.![]() ![]() ![]() |
|
M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematical Studies 112, North-Holland, Amsterdam, 1985.
![]() ![]() |
|
T. Lee
, M. Leok
and H. McClamroch
, Optimal attitude control of a rigid body using geometrically exact computations on SO(3), Journal of Dynamical and Control Systems, 14 (2008)
, 465-487.
doi: 10.1007/s10883-008-9047-7.![]() ![]() ![]() |
|
T. Lee, M. Leok and H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds: A Geometric Approach to Modeling and Analysis, Springer, Interaction of Mechanics and Mathematics, 2018.
doi: 10.1007/978-3-319-56953-6.![]() ![]() ![]() |
|
M. Leok, J. E. Marsden and A. Weinstein, A Discrete Theory of Connections on Principal Bundles, Preprint, https://arXiv.org/abs/math/0508338, 2005.
![]() |
|
M. Leok
and T. Shingel
, Prolongation-collocation variational integrators, IMA J. Numer. Anal., 32 (2012)
, 1194-1216.
doi: 10.1093/imanum/drr042.![]() ![]() ![]() |
|
A. Lewis, Reduction of Simple Mechanical Systems, Mechanics and Symmetry Seminars, University of Warwick, https://mast.queensu.ca/~andrew/, 1997.
![]() |
|
S. Leyendecker
, S. Ober-Blobaum
, J. Marsden
and M. Ortiz
, Discrete mechanics and optimal control for constrained systems, Optim. Control, Appl. Methods, 316 (2010)
, 505-528.
doi: 10.1002/oca.912.![]() ![]() ![]() |
|
J. C. Marrero
, D. Martín de Diego
and E. Martínez
, Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids, Nonlinearity, 19 (2006)
, 1313-1348.
doi: 10.1088/0951-7715/19/6/006.![]() ![]() ![]() |
|
J. C. Marrero
, D. Martín de Diego
and A. Stern
, Symplectic groupies and discrete constrained Lagrangian mechanics, Discrete and Continuous Mechanical Systems, Serie A, 35 (2015)
, 367-397.
doi: 10.3934/dcds.2015.35.367.![]() ![]() ![]() |
|
J. E. Marsden
and J. Scheurle
, The Reduced Euler-Lagrange equations, Fields Institute Communications, 1 (1993)
, 139-164.
![]() ![]() |
|
J. E. Marsden
and M. West
, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001)
, 357-514.
doi: 10.1017/S096249290100006X.![]() ![]() ![]() |
|
J. Marsden
and J. Wendlandt
, Mechanical Integrators Derived from a Discrete Variational Principle, Physica D, 106 (1997)
, 223-246.
doi: 10.1016/S0167-2789(97)00051-1.![]() ![]() ![]() |
|
J. E. Marsden
, S. Pekarsky
and S. Shkoller
, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999)
, 1647-1662.
doi: 10.1088/0951-7715/12/6/314.![]() ![]() ![]() |
|
J. E. Marsden
, S. Pekarsky
and S. Shkoller
, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, Journal of Geometry and Physics, 36 (2000)
, 140-151.
doi: 10.1016/S0393-0440(00)00018-8.![]() ![]() ![]() |
|
J. Moser
and A. P. Veselov
, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991)
, 217-243.
doi: 10.1007/BF02352494.![]() ![]() ![]() |
|
S. Ober-Blobaum
, O. Junge
and J. E. Marsden
, Discrete mechanics and optimal control: An analysis, ESAIM Control Optim. Calc. Var., 17 (2011)
, 322-352.
doi: 10.1051/cocv/2010012.![]() ![]() ![]() |
|
S. Ober-Blobaum
, Galerkin variational integrators and modified symplectic Runge-Kutta methods, IMA J. Numer. Anal., 37 (2017)
, 375-406.
doi: 10.1093/imanum/drv062.![]() ![]() ![]() |
|
T. Ohsawa
, Symmetry reduction of optimal control systems and principal connections, SIAM Journal on Control and Optimization, 51 (2013)
, 96-120.
doi: 10.1137/110835219.![]() ![]() ![]() |
|
J. P. Ostrowski, Computing Reduced Equations for Robotic Systems with Constraints and Symmetries, IEEE Transactions on robotic and automation, 1999.
![]() |
|
G. W. Patrick
and C. Cuell
, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009)
, 243-264.
doi: 10.1007/s00211-009-0245-3.![]() ![]() ![]() |