The existence and uniqueness/multiplicity of phase locked solution for continuum Kuramoto model was studied in [
Citation: |
J. J. Acebron
, L. L. Bonilla
, C. J. Perez-Vicente
, F. Ritort
and R. Spigler
, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005)
, 137-185.
![]() |
|
D. Benedetto
, E. Caglioti
and U. Montemagno
, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016)
, 813-823.
doi: 10.1007/s10955-015-1426-3.![]() ![]() ![]() |
|
D. Benedetto
, E. Caglioti
and U. Montemagno
, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Comm. Math. Sci., 13 (2015)
, 1775-1786.
doi: 10.4310/CMS.2015.v13.n7.a6.![]() ![]() ![]() |
|
J. A. Carrillo
, Y.-P. Choi
, S.-Y. Ha
, M.-J. Kang
and Y. Kim
, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014)
, 395-415.
doi: 10.1007/s10955-014-1005-z.![]() ![]() ![]() |
|
R. Chill
, On the Lojasiewicz-Simon gradient inequality, J. Funct. Anal., 201 (2003)
, 572-601.
doi: 10.1016/S0022-1236(02)00102-7.![]() ![]() ![]() |
|
Y. P. Choi
, S. -Y. Ha
, S. Jung
and Y. Kim
, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012)
, 735-754.
doi: 10.1016/j.physd.2011.11.011.![]() ![]() ![]() |
|
Y.-P. Choi
, Z. Li
, S.-Y. Ha
, X. Xue
and S.-B. Yun
, Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow, J. Diff. Eqs., 257 (2014)
, 2591-2621.
doi: 10.1016/j.jde.2014.05.054.![]() ![]() ![]() |
|
H. Dietert
, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., 105 (2016)
, 451-489.
doi: 10.1002/cpa.21741.![]() ![]() ![]() |
|
H. Dietert
, B. Fernandez
and D. Gérard-Varet
, Landau damping to partially locked states in the Kuramoto model, Comm. Pure Appl. Math., 71 (2018)
, 953-993.
doi: 10.4310/CMS.2013.v11.n2.a7.![]() ![]() ![]() |
|
J.-G. Dong
and X. Xue
, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013)
, 465-480.
doi: 10.4310/CMS.2013.v11.n2.a7.![]() ![]() ![]() |
|
F. Dörfler
and F. Bullo
, On the critical coupling for Kuramoto oscillator, SIAM. J. Appl. Dyn. Syst., 10 (2011)
, 1070-1099.
doi: 10.1137/10081530X.![]() ![]() ![]() |
|
G. B. Ermentrout
, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Bio., 22 (1985)
, 1-9.
doi: 10.1007/BF00276542.![]() ![]() ![]() |
|
S. Y. Ha
, T. Ha
and J. H. Kim
, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010)
, 1692-1700.
doi: 10.1016/j.physd.2010.05.003.![]() ![]() ![]() |
|
S.-Y. Ha
, Z. Li
and X. Xue
, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Diff. Eqs., 255 (2013)
, 3053-3070.
doi: 10.1016/j.jde.2013.07.013.![]() ![]() ![]() |
|
A. Haraux
and M. A. Jendoubi
, The Łojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework, J. Funct. Anal., 260 (2011)
, 2826-2842.
doi: 10.1016/j.jfa.2011.01.012.![]() ![]() ![]() |
|
S.-B. Hsu, Ordinary differential equations with applications, WorldScientific, Singapore, (2006), 31-33.
![]() |
|
Y. Kuromoto, International symposium on mathematical problems in mathematical physics, Lect. Notes Theoret. Phys., 30 (1975), 420.
![]() |
|
Y. Kuromoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69689-3.![]() ![]() ![]() |
|
Z. Li and X. Xue, Convergence of analytic gradient-type systems with periodicity and its applications in Kuramoto models, Applied Mathematics Letters, 2018.
doi: 10.1016/j.aml.2018.10.015.![]() ![]() |
|
Z. Li, X. Xue and D. Yu, On the Łojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 0227041, 20pp.
doi: 10.1063/1.4908104.![]() ![]() ![]() |
|
Z. Li
, X. Xue
and D. Yu
, Synchronization and tansient stability in power grids based on Łojasiewicz inequalities, SIAM J. Control Optim., 52 (2014)
, 2482-2511.
doi: 10.1137/130950604.![]() ![]() ![]() |
|
S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles, Éditions du Centre National de la Recherche Scientifique, Paris, (1963), 87-89.
![]() ![]() |
|
L. Lovász
and B. Szegedy
, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006)
, 933-957.
doi: 10.1016/j.jctb.2006.05.002.![]() ![]() ![]() |
|
G. S. Medvedev
, The nonlinear heat equation on W-random graphs, Arch. Rational Mech. Anal., 212 (2014)
, 781-803.
doi: 10.1007/s00205-013-0706-9.![]() ![]() ![]() |
|
G. S. Medvedev
, Small-world networks of Kuramoto oscillators, Physica D, 266 (2014)
, 13-22.
doi: 10.1016/j.physd.2013.09.008.![]() ![]() ![]() |
|
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp
doi: 10.1063/1.2930766.![]() ![]() ![]() |
|
S. H. Strogatz
, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phsica D, 143 (2000)
, 1-20.
doi: 10.1016/S0167-2789(00)00094-4.![]() ![]() ![]() |
|
S. H. Strogatz
and J. Mirollo
, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991)
, 613-635.
doi: 10.1007/BF01029202.![]() ![]() ![]() |
|
W. C. Troy
, Existence and exact multiplicity of phaselocked solutions of a Kuramoto model of mutually coupled oscillators, SIAM J. Appl. Math., 75 (2015)
, 1745-1760.
doi: 10.1137/15100309X.![]() ![]() ![]() |
|
J. L. van Hemmen
and W. F. Wreszinski
, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993)
, 145-166.
![]() |