
-
Previous Article
Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces
- DCDS Home
- This Issue
-
Next Article
The radial mass-subcritical NLS in negative order Sobolev spaces
Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems
1. | Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy |
2. | Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (CMAF – CIO), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edificio C6, 1749–016 Lisboa, Portugal |
3. | Departamento de Matemática and Centro de Matemática, Aplicações Fundamentais, e Investigação Operacional (CMAF – CIO), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edificio C6, 1749–016 Lisboa, Portugal |
In this work we prove the lower bound for the number of $T$-periodic solutions of an asymptotically linear planar Hamiltonian system. Precisely, we show that such a system, $T$-periodic in time, with $T$-Maslov indices $i_0, i_∞$ at the origin and at infinity, has at least $|i_∞-i_0|$ periodic solutions, and an additional one if $i_0$ is even. Our argument combines the Poincaré-Birkhoff Theorem with an application of topological degree. We illustrate the sharpness of our result, and extend it to the case of second orders ODEs with linear-like behaviour at zero and infinity.
References:
[1] |
A. Abbondandolo,
Morse Theory for Hamiltonian Systems, Chapman & Hall/CRC research notes in mathematical series 425, 2001. |
[2] |
H. Amann and E. Zehnder,
Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 7 (1980), 539-603.
|
[3] |
A. Boscaggin and M. Garrione,
Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem, Nonlinear Anal., 74 (2011), 4166-4185.
doi: 10.1016/j.na.2011.03.051. |
[4] |
J. Campos, A. Margheri, R. Martins and C. Rebelo,
A note on a modified version of the Poincaré-Birkhoff theorem, J. Differential Equations, 203 (2004), 55-63.
doi: 10.1016/j.jde.2004.03.022. |
[5] |
C. Conley and E. Zehnder,
Morse-type index theory for flows and periodic solutions for
Hamiltonian equations, Comm. Pure Appl. Math., 37 (1984), 207-253.
doi: 10.1002/cpa.3160370204. |
[6] |
F. Dalbono and C. Rebelo,
Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, Rend. Semin. Mat. Univ. Politec. Torino, 60 (2002), 233-263.
|
[7] |
F. Dalbono and F. Zanolin,
Multiplicity results for asymptotically linear equations using the
rotation number approach, Mediterr. J. Math, 4 (2007), 127-149.
doi: 10.1007/s00009-007-0108-z. |
[8] |
Y. Dong,
Index theory, nontrivial solutions, and asymptotically linear second-order Hamiltonian systems, J. Differential Equations, 214 (2005), 233-255.
doi: 10.1016/j.jde.2004.10.030. |
[9] |
A. Fonda and P. Gidoni,
An avoiding cones condition for the Poincaré–Birkhoff Theorem, J. Differential Equations, 262 (2017), 1064-1084.
doi: 10.1016/j.jde.2016.10.002. |
[10] |
A. Fonda and J. Mawhin,
Iterative and variational methods for the solvability of some semilinear equations in Hilbert spaces, J. Differential Equations, 98 (1992), 355-375.
doi: 10.1016/0022-0396(92)90097-7. |
[11] |
A. Fonda and J. Mawhin, An iterative method for the solvability of semilinear equations
in Hilbert spaces and applications, in: Partial Differential Equations and Other Topics (J.
Wiener and J. K. Hale eds.), Longman, London, (1992), 126–132. |
[12] |
A. Fonda, M. Sabatini and F. Zanolin,
Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff theorem, Topol. Methods Nonlinear Anal., 40 (2012), 29-52.
|
[13] |
A. Fonda and A.J. Ureña,
A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian
flows, Ann. Inst. H. Poincaré Anal. Non Lin aire, 34 (2017), 679-698.
doi: 10.1016/j.anihpc.2016.04.002. |
[14] |
M. Garrione, A. Margheri and C. Rebelo, Nonautonomous nonlinear ODEs: Nonresonance conditions and rotation numbers, preprint. |
[15] |
I.M. Gel'fand and V.B. Liskii,
On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Am. Math. Soc. Transl. Ser. 2, 8 (1958), 143-181.
doi: 10.1090/trans2/008/06. |
[16] |
C.-G. Liu,
A note on the monotonicity of the Maslov-type index of linear Hamiltonian systems
with applications, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 1263-1277.
doi: 10.1017/S0308210500004364. |
[17] |
Y. Long,
A Maslov type index for symplectic paths, Topological Meth. Nonlinear Anal., 10 (1997), 47-78.
doi: 10.12775/TMNA.1997.021. |
[18] |
A. Margheri, C. Rebelo and P. Torres,
On the use of Morse index and rotation numbers for
multiplicity of resonant BVPs, J. Math. Anal. Appl., 413 (2014), 660-667.
doi: 10.1016/j.jmaa.2013.12.005. |
[19] |
A. Margheri, C. Rebelo and F. Zanolin,
Maslov index, Poincaré-Birkhoff theorem and periodic
solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations, 183 (2002), 342-367.
doi: 10.1006/jdeq.2001.4122. |
[20] |
C. Rebelo,
A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of
planar systems, Nonlinear Anal., 29 (1997), 291-311.
doi: 10.1016/S0362-546X(96)00065-X. |
[21] |
C.P. Simon,
A bound for the fixed-point index of an area-preserving map with applications
to mechanics, Invent. Math., 26 (1974), 187-200.
doi: 10.1007/BF01418948. |
show all references
References:
[1] |
A. Abbondandolo,
Morse Theory for Hamiltonian Systems, Chapman & Hall/CRC research notes in mathematical series 425, 2001. |
[2] |
H. Amann and E. Zehnder,
Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 7 (1980), 539-603.
|
[3] |
A. Boscaggin and M. Garrione,
Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem, Nonlinear Anal., 74 (2011), 4166-4185.
doi: 10.1016/j.na.2011.03.051. |
[4] |
J. Campos, A. Margheri, R. Martins and C. Rebelo,
A note on a modified version of the Poincaré-Birkhoff theorem, J. Differential Equations, 203 (2004), 55-63.
doi: 10.1016/j.jde.2004.03.022. |
[5] |
C. Conley and E. Zehnder,
Morse-type index theory for flows and periodic solutions for
Hamiltonian equations, Comm. Pure Appl. Math., 37 (1984), 207-253.
doi: 10.1002/cpa.3160370204. |
[6] |
F. Dalbono and C. Rebelo,
Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, Rend. Semin. Mat. Univ. Politec. Torino, 60 (2002), 233-263.
|
[7] |
F. Dalbono and F. Zanolin,
Multiplicity results for asymptotically linear equations using the
rotation number approach, Mediterr. J. Math, 4 (2007), 127-149.
doi: 10.1007/s00009-007-0108-z. |
[8] |
Y. Dong,
Index theory, nontrivial solutions, and asymptotically linear second-order Hamiltonian systems, J. Differential Equations, 214 (2005), 233-255.
doi: 10.1016/j.jde.2004.10.030. |
[9] |
A. Fonda and P. Gidoni,
An avoiding cones condition for the Poincaré–Birkhoff Theorem, J. Differential Equations, 262 (2017), 1064-1084.
doi: 10.1016/j.jde.2016.10.002. |
[10] |
A. Fonda and J. Mawhin,
Iterative and variational methods for the solvability of some semilinear equations in Hilbert spaces, J. Differential Equations, 98 (1992), 355-375.
doi: 10.1016/0022-0396(92)90097-7. |
[11] |
A. Fonda and J. Mawhin, An iterative method for the solvability of semilinear equations
in Hilbert spaces and applications, in: Partial Differential Equations and Other Topics (J.
Wiener and J. K. Hale eds.), Longman, London, (1992), 126–132. |
[12] |
A. Fonda, M. Sabatini and F. Zanolin,
Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff theorem, Topol. Methods Nonlinear Anal., 40 (2012), 29-52.
|
[13] |
A. Fonda and A.J. Ureña,
A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian
flows, Ann. Inst. H. Poincaré Anal. Non Lin aire, 34 (2017), 679-698.
doi: 10.1016/j.anihpc.2016.04.002. |
[14] |
M. Garrione, A. Margheri and C. Rebelo, Nonautonomous nonlinear ODEs: Nonresonance conditions and rotation numbers, preprint. |
[15] |
I.M. Gel'fand and V.B. Liskii,
On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Am. Math. Soc. Transl. Ser. 2, 8 (1958), 143-181.
doi: 10.1090/trans2/008/06. |
[16] |
C.-G. Liu,
A note on the monotonicity of the Maslov-type index of linear Hamiltonian systems
with applications, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 1263-1277.
doi: 10.1017/S0308210500004364. |
[17] |
Y. Long,
A Maslov type index for symplectic paths, Topological Meth. Nonlinear Anal., 10 (1997), 47-78.
doi: 10.12775/TMNA.1997.021. |
[18] |
A. Margheri, C. Rebelo and P. Torres,
On the use of Morse index and rotation numbers for
multiplicity of resonant BVPs, J. Math. Anal. Appl., 413 (2014), 660-667.
doi: 10.1016/j.jmaa.2013.12.005. |
[19] |
A. Margheri, C. Rebelo and F. Zanolin,
Maslov index, Poincaré-Birkhoff theorem and periodic
solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations, 183 (2002), 342-367.
doi: 10.1006/jdeq.2001.4122. |
[20] |
C. Rebelo,
A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of
planar systems, Nonlinear Anal., 29 (1997), 291-311.
doi: 10.1016/S0362-546X(96)00065-X. |
[21] |
C.P. Simon,
A bound for the fixed-point index of an area-preserving map with applications
to mechanics, Invent. Math., 26 (1974), 187-200.
doi: 10.1007/BF01418948. |



[1] |
Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361 |
[2] |
Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin. On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2393-2419. doi: 10.3934/dcds.2020119 |
[3] |
Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259 |
[4] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[5] |
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure and Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541 |
[6] |
Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765 |
[7] |
Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354 |
[8] |
William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028 |
[9] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047 |
[10] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[11] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
[12] |
Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15 |
[13] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[14] |
Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243 |
[15] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128 |
[16] |
Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835 |
[17] |
P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213 |
[18] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 |
[19] |
Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939 |
[20] |
Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]