Let $X$ be the full shift on two symbols. The lexicographic order induces a partial order known as first-order stochastic dominance on the collection ${\mathcal{M}}_{X}$ of its shift-invariant probability measures. We present a study of the fine structure of this dominance order, denoted by $\prec$, and give criteria for establishing comparability or incomparability between measures in ${\mathcal{M}}_{X}$. The criteria also give an insight to the complicated combinatorics of orbits in the shift. As a by-product, we give a direct proof that Sturmian measures are totally ordered with respect to $\prec$.
Citation: |
J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511546563.![]() ![]() ![]() |
|
V. Anagnostopoulou, Sturmian Measures and Stochastic Dominance in Ergodic Optimization, Ph.D. thesis, Queen Mary University of London, 2009.
![]() |
|
V. Anagnostopoulou
and O. Jenkinson
, Which beta-shifts have a largest invariant measure?, Jour. Lon. Math. Soc., 79 (2009)
, 445-464.
doi: 10.1112/jlms/jdn070.![]() ![]() ![]() |
|
J. Berstel and P. Séébold, Sturmian words, in Algebraic Combinatorics on Words (Encyclopaedia of Mathematics and its Applications 90), (M. Lothaire), Cambridge University Press, (2002), 45–110.
![]() |
|
T. Bousch
, Le poisson n'a pas d'arȇtes, Ann. Inst. Henri Poincaré (Proba. et Stat.), 36 (2000)
, 489-508.
doi: 10.1016/S0246-0203(00)00132-1.![]() ![]() ![]() |
|
T. Bousch
, Une propriété de domination convexe pour les orbites sturmiennes, Can. Jour. Math., 67 (2015)
, 90-106.
doi: 10.4153/CJM-2014-009-8.![]() ![]() ![]() |
|
T. Bousch
and J. Mairesse
, Asymptotic height optimization for topical IFS, tetris heaps, and
the finiteness conjecture, Jour. Amer. Math. Soc., 15 (2002)
, 77-111.
doi: 10.1090/S0894-0347-01-00378-2.![]() ![]() ![]() |
|
S. Bullett
and P. Sentenac
, Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Camb. Phil. Soc., 115 (1994)
, 451-481.
doi: 10.1017/S0305004100072236.![]() ![]() ![]() |
|
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, 1979.
![]() ![]() |
|
O. Jenkinson, Conjugacy Rigidity, Cohomological Triviality, and Barycentres of Invariant Measures, Ph.D. thesis, University of Warwick, 1996.
![]() |
|
O. Jenkinson
, Frequency locking on the boundary of the barycentre set, Exp. Math., 9 (2000)
, 309-317.
![]() ![]() |
|
O. Jenkinson
, Maximum hitting frequency and fastest mean return time, Nonlinearity, 18 (2005)
, 2305-2321.
doi: 10.1088/0951-7715/18/5/022.![]() ![]() ![]() |
|
O. Jenkinson
, Ergodic optimization, Discrete & Cont. Dyn. Sys., 15 (2006)
, 197-224.
doi: 10.3934/dcds.2006.15.197.![]() ![]() ![]() |
|
O. Jenkinson
, Optimization and majorization of invariant measures, Electron. Res. Announc. Amer. Math. Soc., 13 (2007)
, 1-12.
doi: 10.1090/S1079-6762-07-00170-9.![]() ![]() ![]() |
|
O. Jenkinson
, A partial order on $× 2$-invariant measures, Math. Res. Lett., 15 (2008)
, 893-900.
doi: 10.4310/MRL.2008.v15.n5.a6.![]() ![]() ![]() |
|
T. Kamae
, U. Krengel
and G. L. O'Brien
, Stochastic inequalities on partially ordered spaces, Ann. Prob., 5 (1977)
, 899-912.
![]() ![]() |
|
H. Levy, Stochastic Dominance: Investment Decision Making under Uncertainty, 3rd edition, Springer, 2016.
doi: 10.1007/978-3-319-21708-6.![]() ![]() ![]() |
|
T. Lindvall
, On Strassen's theorem on stochastic domination, Electron. Commun. Probab., 4 (1999)
, 51-59.
doi: 10.1214/ECP.v4-1005.![]() ![]() ![]() |
|
M. Morse
and G. A. Hedlund
, Symbolic dynamics Ⅱ. Sturmian trajectories, Amer. J. Math., 62 (1940)
, 1-42.
doi: 10.2307/2371431.![]() ![]() ![]() |
|
K. Petersen, Some Sturmian symbolic dynamics, Available from: http://petersen.web.unc.edu/some-slides-from-talks/
![]() |
|
N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002.
doi: 10.1007/b13861.![]() ![]() ![]() |
|
A. Rényi
, Representations of real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hungar., 8 (1957)
, 477-493.
doi: 10.1007/BF02020331.![]() ![]() ![]() |
|
V. Strassen
, The existence of probability measures with given marginals, Ann. Math. Statist., 36 (1965)
, 423-439.
doi: 10.1214/aoms/1177700153.![]() ![]() ![]() |
|
P. Veerman
, Symbolic dynamics of order-preserving orbits, Physica D, 29 (1987)
, 191-201.
doi: 10.1016/0167-2789(87)90055-8.![]() ![]() ![]() |
Orbits supporting measures
A concatenation procedure that generates the largest point in the support of a Sturmian measure
The pairwise incomparable shift-invariant probability measures
Hasse diagram of first-order stochastic dominance for measures supported on periodic orbits of period up to