\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stochastic dominance for shift-invariant measures

The author was partially supported by EPSRC grant EP/L02246X/1.

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • Let $X$ be the full shift on two symbols. The lexicographic order induces a partial order known as first-order stochastic dominance on the collection ${\mathcal{M}}_{X}$ of its shift-invariant probability measures. We present a study of the fine structure of this dominance order, denoted by $\prec$, and give criteria for establishing comparability or incomparability between measures in ${\mathcal{M}}_{X}$. The criteria also give an insight to the complicated combinatorics of orbits in the shift. As a by-product, we give a direct proof that Sturmian measures are totally ordered with respect to $\prec$.

    Mathematics Subject Classification: Primary: 37B10, 37A05, 37E05, 37E15; Secondary: 37E45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Orbits supporting measures $\mu_{110010} \prec \mu_{110110010} = \mu_{110}\ast\mu_{110010}\prec \mu_{110}$

    Figure 3.  A concatenation procedure that generates the largest point in the support of a Sturmian measure $S_{p/q}$

    Figure 2.  The pairwise incomparable shift-invariant probability measures $\mu_{10}$, $\mu_{1100}$, $\mu_{110100}$ and $\mu_{110010}$ of frequency $1/2$.

    Figure 4.  Hasse diagram of first-order stochastic dominance for measures supported on periodic orbits of period up to $7$. Orbits that carry measures with equal frequency are displayed on the same horizontal line, and frequencies decrease from top to bottom.

  •   J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511546563.
      V. Anagnostopoulou, Sturmian Measures and Stochastic Dominance in Ergodic Optimization, Ph.D. thesis, Queen Mary University of London, 2009.
      V. Anagnostopoulou  and  O. Jenkinson , Which beta-shifts have a largest invariant measure?, Jour. Lon. Math. Soc., 79 (2009) , 445-464.  doi: 10.1112/jlms/jdn070.
      J. Berstel and P. Séébold, Sturmian words, in Algebraic Combinatorics on Words (Encyclopaedia of Mathematics and its Applications 90), (M. Lothaire), Cambridge University Press, (2002), 45–110.
      T. Bousch , Le poisson n'a pas d'arȇtes, Ann. Inst. Henri Poincaré (Proba. et Stat.), 36 (2000) , 489-508.  doi: 10.1016/S0246-0203(00)00132-1.
      T. Bousch , Une propriété de domination convexe pour les orbites sturmiennes, Can. Jour. Math., 67 (2015) , 90-106.  doi: 10.4153/CJM-2014-009-8.
      T. Bousch  and  J. Mairesse , Asymptotic height optimization for topical IFS, tetris heaps, and the finiteness conjecture, Jour. Amer. Math. Soc., 15 (2002) , 77-111.  doi: 10.1090/S0894-0347-01-00378-2.
      S. Bullett  and  P. Sentenac , Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Camb. Phil. Soc., 115 (1994) , 451-481.  doi: 10.1017/S0305004100072236.
      G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, 1979.
      O. Jenkinson, Conjugacy Rigidity, Cohomological Triviality, and Barycentres of Invariant Measures, Ph.D. thesis, University of Warwick, 1996.
      O. Jenkinson , Frequency locking on the boundary of the barycentre set, Exp. Math., 9 (2000) , 309-317. 
      O. Jenkinson , Maximum hitting frequency and fastest mean return time, Nonlinearity, 18 (2005) , 2305-2321.  doi: 10.1088/0951-7715/18/5/022.
      O. Jenkinson , Ergodic optimization, Discrete & Cont. Dyn. Sys., 15 (2006) , 197-224.  doi: 10.3934/dcds.2006.15.197.
      O. Jenkinson , Optimization and majorization of invariant measures, Electron. Res. Announc. Amer. Math. Soc., 13 (2007) , 1-12.  doi: 10.1090/S1079-6762-07-00170-9.
      O. Jenkinson , A partial order on $× 2$-invariant measures, Math. Res. Lett., 15 (2008) , 893-900.  doi: 10.4310/MRL.2008.v15.n5.a6.
      T. Kamae , U. Krengel  and  G. L. O'Brien , Stochastic inequalities on partially ordered spaces, Ann. Prob., 5 (1977) , 899-912. 
      H. Levy, Stochastic Dominance: Investment Decision Making under Uncertainty, 3rd edition, Springer, 2016. doi: 10.1007/978-3-319-21708-6.
      T. Lindvall , On Strassen's theorem on stochastic domination, Electron. Commun. Probab., 4 (1999) , 51-59.  doi: 10.1214/ECP.v4-1005.
      M. Morse  and  G. A. Hedlund , Symbolic dynamics Ⅱ. Sturmian trajectories, Amer. J. Math., 62 (1940) , 1-42.  doi: 10.2307/2371431.
      K. Petersen, Some Sturmian symbolic dynamics, Available from: http://petersen.web.unc.edu/some-slides-from-talks/
      N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002. doi: 10.1007/b13861.
      A. Rényi , Representations of real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hungar., 8 (1957) , 477-493.  doi: 10.1007/BF02020331.
      V. Strassen , The existence of probability measures with given marginals, Ann. Math. Statist., 36 (1965) , 423-439.  doi: 10.1214/aoms/1177700153.
      P. Veerman , Symbolic dynamics of order-preserving orbits, Physica D, 29 (1987) , 191-201.  doi: 10.1016/0167-2789(87)90055-8.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(366) PDF downloads(296) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return