We show that a continuous abelian action (in particular $\mathbb{R}^{d}$) on a compact metric space equipped with an invariant ergodic measure has discrete spectrum if and only it is $μ-$mean equicontinuous (proven for $\mathbb{Z}^{d}$ in [
Citation: |
E. Akin
, J. Auslander
and K. Berg
, When is a transitive map chaotic?, Ohio State Univ. Math. Res. Inst. Publ., 5 (1996)
, 25-40.
![]() ![]() |
|
J. Auslander
, Mean- l-stable systems, Illinois Journal of Mathematics, 3 (1959)
, 566-579.
![]() ![]() |
|
J. Auslander
and J. A. Yorke
, Interval maps, factors of maps, and chaos, Tohoku Mathematical Journal, 32 (1980)
, 177-188.
doi: 10.2748/tmj/1178229634.![]() ![]() ![]() |
|
M. Baake and U. Grimm, Aperiodic Order, Cambridge University Press, 2013.
doi: 10.1017/CBO9781139025256.![]() ![]() ![]() |
|
M. Baake
and D. Lenz
, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, Ergodic Theory and Dynamical Systems, 24 (2004)
, 1867-1893.
doi: 10.1017/S0143385704000318.![]() ![]() ![]() |
|
M. Baake
, D. Lenz
and R. V. Moody
, Characterization of model sets by dynamical systems, Ergodic Theory and Dynamical Systems, 27 (2007)
, 341-382.
doi: 10.1017/S0143385706000800.![]() ![]() ![]() |
|
B. Cadre
and P. Jacob
, On pairwise sensitivity, Journal of Mathematical Analysis and Applications, 309 (2005)
, 375-382.
doi: 10.1016/j.jmaa.2005.01.061.![]() ![]() ![]() |
|
T. Downarowicz
and E. Glasner
, Isomorphic extensions and applications, Topological Methods in Nonlinear Analysis, 48 (2016)
, 321-338.
doi: 10.12775/TMNA.2016.050.![]() ![]() ![]() |
|
S. Dworkin
, Spectral theory and x-ray diffraction, Journal of mathematical physics, 34 (1993)
, 2965-2967.
doi: 10.1063/1.530108.![]() ![]() ![]() |
|
R. Ellis
, Equicontinuity and almost periodic functions, Proceedings of the American Mathematical Society, 10 (1959)
, 637-643.
doi: 10.2307/2033667.![]() ![]() ![]() |
|
S. Fomin
, On dynamical systems with pure point spectrum (russian), Dokl. Akad. Nauk SSSR, 77 (1951)
, 29-32.
![]() ![]() |
|
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.
![]() ![]() |
|
H. Furstenberg
, Y. Katznelson
and D. Ornstein
, The ergodic theoretical proof of szemerédi's
theorem, Bulletin of the AMS, 7 (1982)
, 527-552.
doi: 10.1090/S0273-0979-1982-15052-2.![]() ![]() ![]() |
|
F. García-Ramos
, Weak forms of topological and measure theoretical equicontinuity: Relationships with discrete spectrum and sequence entropy, Ergodic Theory and Dynamical Systems, 37 (2017)
, 1211-1237.
doi: 10.1017/etds.2015.83.![]() ![]() ![]() |
|
R. H. Gilman
, Classes of linear automata, Ergodic Theory Dyn. Syst., 7 (1987)
, 105-118.
doi: 10.1017/S0143385700003837.![]() ![]() ![]() |
|
E. Glasner, Ergodic Theory Via Joinings, American Mathematical Society, Providence, RI,
2003.
doi: 10.1090/surv/101.![]() ![]() ![]() |
|
J.-B. Gouere
, Quasicrystals and almost periodicity, Communications in Mathematical Physics, 255 (2005)
, 655-681.
doi: 10.1007/s00220-004-1271-8.![]() ![]() ![]() |
|
W. Huang
, P. Lu
and X. Ye
, Measure-theoretical sensitivity and equicontinuity, Israel Journal of Mathematics, 183 (2011)
, 233-283.
doi: 10.1007/s11856-011-0049-x.![]() ![]() ![]() |
|
J. Kellendonk, D. Lenz and J. Savinien, Mathematics of Aperiodic Order, Progress in Mathematics, 309. Birkh?user/Springer, Basel, 2015.
doi: 10.1007/978-3-0348-0903-0.![]() ![]() ![]() |
|
J.-Y. Lee
, R. V. Moody
and B. Solomyak
, Pure point dynamical and diffraction spectra, Annales Henri Poincaré, 3 (2002)
, 1003-1018.
doi: 10.1007/s00023-002-8646-1.![]() ![]() ![]() |
|
D. Lenz, An autocorrelation and discrete spectrum for dynamical systems on metric spaces,
arXiv preprint, arXiv: 1608.05636.
![]() |
|
J. Li
, S. Tu
and X. Ye
, Mean equicontinuity and mean sensitivity, Ergodic Theory and Dynamical Systems, 35 (2015)
, 2587-2612.
doi: 10.1017/etds.2014.41.![]() ![]() ![]() |
|
E. Lindenstrauss
, Pointwise theorems for amenable groups, Inventiones mathematicae, 146 (2001)
, 259-295.
doi: 10.1007/s002220100162.![]() ![]() ![]() |
|
J. C. Oxtoby
, Ergodic sets, Bulletin of the American Mathematical Society, 58 (1952)
, 116-136.
doi: 10.1090/S0002-9904-1952-09580-X.![]() ![]() ![]() |
|
E. Robinson Jr
, The dynamical properties of penrose tilings, Transactions of the American Mathematical Society, 348 (1996)
, 4447-4464.
doi: 10.1090/S0002-9947-96-01640-6.![]() ![]() ![]() |
|
B. Scarpellini
, Stability properties of flows with pure point spectrum, Journal of the London Mathematical Society, 26 (1982)
, 451-464.
doi: 10.1112/jlms/s2-26.3.451.![]() ![]() ![]() |
|
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. SpringerVerlag, New York-Berlin, 1982.
![]() ![]() |