Article Contents
Article Contents

# Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms

• * Corresponding author: Abdelaziz Rhandi

This work has been supported by the M.I.U.R. research project Prin 2015233N54 "Deterministic and Stochastic Evolution Equations". The second and the third authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

• In this paper we prove that the heat kernel $k$ associated to the operator $A: = (1+|x|^\alpha)\Delta +b|x|^{\alpha-1}\frac{x}{|x|}\cdot\nabla -|x|^\beta$ satisfies

$\begin{eqnarray*}k(t,x,y) &\leq&c_1e^{\lambda_0 t+ c_2t^{-\gamma}}\left(\frac{1+|y|^\alpha}{1+|x|^\alpha}\right)^{\frac{b}{2\alpha}}\frac{(|x||y|)^{-\frac{N-1}{2}-\frac{1}{4}(\beta-\alpha)}}{1+|y|^\alpha}\\&&\times\exp\left(-\frac{\sqrt{2}}{\beta-\alpha+2}\left(|x|^{\frac{\beta-\alpha+2}{2}}+ |y|^{\frac{\beta-\alpha+2}{2}}\right)\right)\end{eqnarray*}$

for $t>0,\,|x|,\,|y|\ge 1$, where $b\in\mathbb{R}$, $c_1,\,c_2$ are positive constants, $\lambda_0$ is the largest eigenvalue of the operator $A$, and $\gamma = \frac{\beta-\alpha+2}{\beta+\alpha-2}$, in the case where $N>2,\,\alpha>2$ and $\beta>\alpha -2$. The proof is based on the relationship between the log-Sobolev inequality and the ultracontractivity of a suitable semigroup in a weighted space.

Mathematics Subject Classification: Primary: 35K08, 35K20; Secondary: 35J10, 47D06.

 Citation:

•  D. Bakry , F. Bolley , I. Gentil  and  P. Maheux , Weighted Nash inequalities, Rev. Mat. Iberoam., 28 (2012) , 879-906.  doi: 10.4171/RMI/695. S. E. Boutiah , F. Gregorio , A. Rhandi  and  C. Tacelli , Elliptic operators with unbounded diffusion, drift and potential terms, J. Differential Equations, 264 (2018) , 2184-2204.  doi: 10.1016/j.jde.2017.10.020. A. Canale , A. Rhandi  and  C. Tacelli , Schrödinger-type operators with unbounded diffusion and potential terms, Annali Scuola Normale Superiore di Pisa Cl. Sci., 16 (2016) , 581-601. A. Canale , A. Rhandi  and  C. Tacelli , Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017) , 377-392.  doi: 10.4171/ZAA/1593. A. Canale  and  C. Tacelli , Optimal kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016) , 341-450. E. B. Davies, Heat kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511566158. T. Durante , R. Manzo  and  C. Tacelli , Kernel estimates for Schrödinger type operators with unbounded coefficients and critical exponent, Ricerche Mat., 65 (2016) , 289-305.  doi: 10.1007/s11587-016-0284-x. S. Fornaro  and  L. Lorenzi , Generation results for elliptic operators with unbounded diffusion coefficients in $L^{p}$ and $C_{b}$-spaces, Discrete and Continuous Dynamical Systems A, 18 (2007) , 747-772.  doi: 10.3934/dcds.2007.18.747. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0. M. Kunze , L. Lorenzi  and  A. Rhandi , Kernel estimates for nonautonomous Kolmogorov equations, Advances in Mathematics, 287 (2016) , 600-639.  doi: 10.1016/j.aim.2015.09.029. L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Chapman & Hall/CRC, 2007. L. Lorenzi  and  A. Rhandi , On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, J. Evol. Equ., 15 (2015) , 53-88.  doi: 10.1007/s00028-014-0249-z. G. Metafune , D. Pallara  and  M. Wacker , Feller Semigroups on $\mathbb{R}^{N}$, Semigroup Forum, 65 (2002) , 159-205.  doi: 10.1007/s002330010129. G. Metafune  and  C. Spina , Elliptic operators with unbounded coefficients in $L^{p}$ spaces, Annali Scuola Normale Superiore di Pisa Cl. Sci., 11 (2012) , 303-340. G. Metafune  and  C. Spina , Kernel estimates for some elliptic operators with unbounded coefficients, Discrete and Continuous Dynamical Systems A, 32 (2012) , 2285-2299.  doi: 10.3934/dcds.2012.32.2285. G. Metafune , C. Spina  and  C. Tacelli , Elliptic operators with unbounded diffusion and drift coefficients in $L^{p}$ spaces, Adv. Diff. Equat., 19 (2014) , 473-526. G. Metafune , C. Spina  and  C. Tacelli , On a class of elliptic operators with unbounded diffusion coefficients, Evol. Equ. Control Theory, 3 (2014) , 671-680.  doi: 10.3934/eect.2014.3.671. F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974. E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monogr. Ser., 31, Princeton Univ. Press, 2005.