Advanced Search
Article Contents
Article Contents

A Billingsley-type theorem for the pressure of an action of an amenable group

  • * Corresponding author

    * Corresponding author 

The research was supported by NSF of China (No. 11671057, No. 11471318, No. 11671058) and the Fundamental Research Funds for the Central Universities (No. 2018CDQYST0023)

Abstract Full Text(HTML) Related Papers Cited by
  • This paper extends the definition of Bowen topological entropy of subsets to Pesin-Pitskel topological pressure for the continuous action of amenable groups on a compact metric space. We introduce the local measure theoretic pressure of subsets and investigate the relation between local measure theoretic pressure of Borel probability measures and Pesin-Pitskel topological pressure on an arbitrary subset of a compact metric space.

    Mathematics Subject Classification: 37A35, 37B40.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. L. Adler , A. G. Konheim  and  M. H. McAndrew , Topological entropy, Trans. Amer. Math. Soc., 114 (1965) , 309-319.  doi: 10.2307/1994177.
      P. Billingsley, Ergodic Theory and Information, John Wiley and Sons Inc., New York, 1965.
      A. Bis , An analogue of the variational principle for group and pseudogroup actions, Ann. Inst. Fourier (Grenoble), 63 (2013) , 839-863.  doi: 10.5802/aif.2778.
      R. Bowen, Equilibrium States and the Ergodic Theorey of Anosov Diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, 1975.
      R. Bowen , Hausdorff dimension of quasicircles, Publ. Math. Inst. Hautes Etudes Sci., 50 (1979) , 11-25. 
      M. Brin and A. Katok, On local entropy, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.
      C. Carathéodory , Über das lineare mass, Göttingen Nachr., (1914) , 406-426. 
      D. Feng  and  W. Huang , Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012) , 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.
      T. N. T. Goodman , Relating topological entropy and measure entropy, Bull. London Math. Soc., 3 (1971) , 176-180.  doi: 10.1112/blms/3.2.176.
      L. W. Goodwyn , Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969) , 679-688.  doi: 10.2307/2036610.
      X. Huang , J. Liu  and  C. Zhu , The Bowen topological entropy of subsets for amenable group actions, Discrete Contin. Dyn. Syst., 38 (2018) , 4467-4482.  doi: 10.3934/dcds.2018195.
      D. Kerr and H. Li, Ergodic Theory: Independence and Dichotomies, Springer, 2016. doi: 10.1007/978-3-319-49847-8.
      A. N. Kolmogorov , A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119 (1958) , 861-864. 
      H. Li , Sofic mean dimension, Adv. Math., 244 (2013) , 570-604.  doi: 10.1016/j.aim.2013.05.005.
      B. Liang  and  K. Yan , Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal., 262 (2012) , 584-601.  doi: 10.1016/j.jfa.2011.09.020.
      J. Ma and Z. Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci., Paris, 346 (2008), 503–507. doi: 10.1016/j.crma.2008.03.010.
      I. Namioka , Følner's conditions for amenable semi-groups, Math. Scand., 15 (1964) , 18-28.  doi: 10.7146/math.scand.a-10723.
      D. S. Ornstein  and  B. Weiss , Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987) , 1-141.  doi: 10.1007/BF02790325.
      Y. B. Pesin, Dimension Theory in Dynamical Systems Contemporary Views and Applications, Chicago lecture in Mathematics. University of Chicago Press, Chicago, IL, 1997. doi: 10.7208/chicago/9780226662237.001.0001.
      Y. Pesin  and  B. S. Pitskel , Topological pressure and the variational principle for noncompact sets, Functional Anal. Appl., 18 (1984) , 50-63, 96. 
      D. Ruelle , Statistical mechanics on compact set with Zv action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973) , 237-251.  doi: 10.2307/1996437.
      D. Ruelle, Thermodynamic Formalism, Vol.5 of Encyclopedia of Mathematics and its Applications. Reading, MA: Addision-Wesley, 1978.
      X. Tang , W. Cheng  and  Y. Zhao , Variational principle for topological pressures on subsets, J. Math. Anal. Appl., 424 (2015) , 1272-1285.  doi: 10.1016/j.jmaa.2014.11.066.
      P. Walters , A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975) , 937-971.  doi: 10.2307/2373682.
  • 加载中

Article Metrics

HTML views(1431) PDF downloads(267) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint