
-
Previous Article
On fractional Leibniz rule for Dirichlet Laplacian in exterior domain
- DCDS Home
- This Issue
-
Next Article
Pathological center foliation with dimension greater than one
Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey
1. | Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
2. | School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China |
It is well known that the Leslie-Gower prey-predator model (without Allee effect) has a unique globally asymptotically stable positive equilibrium point, thus there is no Hopf bifurcation branching from positive equilibrium point. In this paper we study the Leslie-Gower prey-predator model with strong Allee effect in prey, and perform a detailed Hopf bifurcation analysis to both the ODE and PDE models, and derive conditions for determining the steady-state bifurcation of PDE model. Moreover, by the center manifold theory and the normal form method, the direction and stability of Hopf bifurcation solutions are established. Finally, some numerical simulations are presented. Apparently, Allee effect changes the topology structure of the original Leslie-Gower model.
References:
[1] |
W. C. Allee,
Principles of Animal Ecology, Saunders, RI, 1949. |
[2] |
M. A. Aziz-Alaoui and M. D. Okiye,
Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069-1075.
doi: 10.1016/S0893-9659(03)90096-6. |
[3] |
Y. L. Cai, C. D. Zhao, W. M. Wang and J. F. Wang,
Dynamics of a Leslie-Gower predator-prey model with additive Allee effect, Appl. Math. Lett., 39 (2015), 2092-2106.
doi: 10.1016/j.apm.2014.09.038. |
[4] |
F. Courchamp, T. Clutton-Brock and B. Grenfell,
Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405-410.
doi: 10.1016/S0169-5347(99)01683-3. |
[5] |
R. H. Cui, J. P. Shi and B. Y. Wu,
Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Diff. Equat., 256 (2014), 108-129.
doi: 10.1016/j.jde.2013.08.015. |
[6] |
L. L. Du and M. X. Wang,
Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, J. Math. Anal. Appl., 366 (2010), 473-485.
doi: 10.1016/j.jmaa.2010.02.002. |
[7] |
Y. H. Du and S. B. Hsu,
A diffusive predator-prey model in heterogeneous environment, J. Diff. Equat., 203 (2004), 331-364.
doi: 10.1016/j.jde.2004.05.010. |
[8] |
E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores,
Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model, 35 (2011), 366-381.
doi: 10.1016/j.apm.2010.07.001. |
[9] |
B. Hassard, N. Kazarinoff and Y. H. Wan,
Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. |
[10] |
A. Korobeinikov,
A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697-699.
doi: 10.1016/S0893-9659(01)80029-X. |
[11] |
P. H. Leslie,
Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213-245.
doi: 10.1093/biomet/35.3-4.213. |
[12] |
P. H. Leslie,
A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16-31.
doi: 10.1093/biomet/45.1-2.16. |
[13] |
S. B. Li, J. H. Wu and H. Nie,
Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model, Comput. Math. Appl., 70 (2015), 3043-3056.
doi: 10.1016/j.camwa.2015.10.017. |
[14] |
Y. Li,
Hopf bifurcations in general systems of Brusselator type, Nonlinear Anal.: Real World Appl., 28 (2016), 32-47.
doi: 10.1016/j.nonrwa.2015.09.004. |
[15] |
Y. Li and M. X. Wang,
Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels, Nonlinear Anal.: Real World Appl., 14 (2013), 1806-1816.
doi: 10.1016/j.nonrwa.2012.11.012. |
[16] |
N. Min and X. M. Wang,
Qualitative analysis for a diffusive predator-prey model with a transmissible disease in the prey population, Comput. Math. Appl., 72 (2016), 1670-1689.
doi: 10.1016/j.camwa.2016.07.028. |
[17] |
N. Min and X. M. Wang,
Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1721-1737.
doi: 10.3934/dcdsb.2018073. |
[18] |
W. J. Ni and M. X. Wang,
Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3409-3420.
doi: 10.3934/dcdsb.2017172. |
[19] |
W. J. Ni and M. X. Wang,
Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Diff. Equat., 261 (2016), 4244-4272.
doi: 10.1016/j.jde.2016.06.022. |
[20] |
W. M. Ni,
Diffusion, cross-diffusion and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.
|
[21] |
P. Y. H. Pang and M. X. Wang,
Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh, 133 (2003), 919-942.
doi: 10.1017/S0308210500002742. |
[22] |
P. Y. H. Pang and M. X. Wang,
Strategy and stationary pattern in a three-species predator-prey model, J. Diff. Equat., 200 (2004), 245-273.
doi: 10.1016/j.jde.2004.01.004. |
[23] |
E. C. Pielou,
Mathematical Ecology, John Wiley & Sons, New York, RI, 1977. |
[24] |
Y. W. Qi and Y. Zhu,
Global stability of Lesile-type predator-prey model, Meth. Appl. Anal., 23 (2016), 259-268.
doi: 10.4310/MAA.2016.v23.n3.a3. |
[25] |
P. A. Stephens and W. J. Sutherland,
Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401-405.
doi: 10.1016/S0169-5347(99)01684-5. |
[26] |
J. F. Wang, J. P. Shi and J. J. W,
Dynamics and pattern formation in a diffusive predator-prey systems with strong Allee effect in prey, J. Diff. Equat., 251 (2011), 1276-1304.
doi: 10.1016/j.jde.2011.03.004. |
[27] |
J. F. Wang, J. J. Wei and J. P. Shi,
Global bifurcation analysis and pattern formation inhomogeneous diffusive predator-prey systems, J. Diff. Equat., 260 (2016), 3495-3523.
doi: 10.1016/j.jde.2015.10.036. |
[28] |
M. X. Wang,
Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D, 196 (2004), 172-192.
doi: 10.1016/j.physd.2004.05.007. |
[29] |
M. X. Wang and Q. Y. Zhang,
Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Cont. Dyn. Syst. A, 38 (2018), 2591-2607.
doi: 10.3934/dcds.2018109. |
[30] |
Y. X. Wang and W. T. Li,
Spatial patterns of the Holling-Tanner predator-prey model with nonlinear diffusion effects, Appl. Anal., 92 (2013), 2168-2181.
doi: 10.1080/00036811.2012.724402. |
[31] |
S. Wiggins,
Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second edition. Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003. |
[32] |
F. Q. Yi, J. J. Wei and J. P. Shi,
Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal.: Real World Appl., 9 (2008), 1038-1051.
doi: 10.1016/j.nonrwa.2007.02.005. |
[33] |
F. Q. Yi, J. J. Wei and J. P. Shi,
Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Equat., 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |
show all references
References:
[1] |
W. C. Allee,
Principles of Animal Ecology, Saunders, RI, 1949. |
[2] |
M. A. Aziz-Alaoui and M. D. Okiye,
Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069-1075.
doi: 10.1016/S0893-9659(03)90096-6. |
[3] |
Y. L. Cai, C. D. Zhao, W. M. Wang and J. F. Wang,
Dynamics of a Leslie-Gower predator-prey model with additive Allee effect, Appl. Math. Lett., 39 (2015), 2092-2106.
doi: 10.1016/j.apm.2014.09.038. |
[4] |
F. Courchamp, T. Clutton-Brock and B. Grenfell,
Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405-410.
doi: 10.1016/S0169-5347(99)01683-3. |
[5] |
R. H. Cui, J. P. Shi and B. Y. Wu,
Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Diff. Equat., 256 (2014), 108-129.
doi: 10.1016/j.jde.2013.08.015. |
[6] |
L. L. Du and M. X. Wang,
Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, J. Math. Anal. Appl., 366 (2010), 473-485.
doi: 10.1016/j.jmaa.2010.02.002. |
[7] |
Y. H. Du and S. B. Hsu,
A diffusive predator-prey model in heterogeneous environment, J. Diff. Equat., 203 (2004), 331-364.
doi: 10.1016/j.jde.2004.05.010. |
[8] |
E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores,
Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model, 35 (2011), 366-381.
doi: 10.1016/j.apm.2010.07.001. |
[9] |
B. Hassard, N. Kazarinoff and Y. H. Wan,
Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. |
[10] |
A. Korobeinikov,
A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697-699.
doi: 10.1016/S0893-9659(01)80029-X. |
[11] |
P. H. Leslie,
Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213-245.
doi: 10.1093/biomet/35.3-4.213. |
[12] |
P. H. Leslie,
A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16-31.
doi: 10.1093/biomet/45.1-2.16. |
[13] |
S. B. Li, J. H. Wu and H. Nie,
Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model, Comput. Math. Appl., 70 (2015), 3043-3056.
doi: 10.1016/j.camwa.2015.10.017. |
[14] |
Y. Li,
Hopf bifurcations in general systems of Brusselator type, Nonlinear Anal.: Real World Appl., 28 (2016), 32-47.
doi: 10.1016/j.nonrwa.2015.09.004. |
[15] |
Y. Li and M. X. Wang,
Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels, Nonlinear Anal.: Real World Appl., 14 (2013), 1806-1816.
doi: 10.1016/j.nonrwa.2012.11.012. |
[16] |
N. Min and X. M. Wang,
Qualitative analysis for a diffusive predator-prey model with a transmissible disease in the prey population, Comput. Math. Appl., 72 (2016), 1670-1689.
doi: 10.1016/j.camwa.2016.07.028. |
[17] |
N. Min and X. M. Wang,
Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1721-1737.
doi: 10.3934/dcdsb.2018073. |
[18] |
W. J. Ni and M. X. Wang,
Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3409-3420.
doi: 10.3934/dcdsb.2017172. |
[19] |
W. J. Ni and M. X. Wang,
Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Diff. Equat., 261 (2016), 4244-4272.
doi: 10.1016/j.jde.2016.06.022. |
[20] |
W. M. Ni,
Diffusion, cross-diffusion and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.
|
[21] |
P. Y. H. Pang and M. X. Wang,
Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh, 133 (2003), 919-942.
doi: 10.1017/S0308210500002742. |
[22] |
P. Y. H. Pang and M. X. Wang,
Strategy and stationary pattern in a three-species predator-prey model, J. Diff. Equat., 200 (2004), 245-273.
doi: 10.1016/j.jde.2004.01.004. |
[23] |
E. C. Pielou,
Mathematical Ecology, John Wiley & Sons, New York, RI, 1977. |
[24] |
Y. W. Qi and Y. Zhu,
Global stability of Lesile-type predator-prey model, Meth. Appl. Anal., 23 (2016), 259-268.
doi: 10.4310/MAA.2016.v23.n3.a3. |
[25] |
P. A. Stephens and W. J. Sutherland,
Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401-405.
doi: 10.1016/S0169-5347(99)01684-5. |
[26] |
J. F. Wang, J. P. Shi and J. J. W,
Dynamics and pattern formation in a diffusive predator-prey systems with strong Allee effect in prey, J. Diff. Equat., 251 (2011), 1276-1304.
doi: 10.1016/j.jde.2011.03.004. |
[27] |
J. F. Wang, J. J. Wei and J. P. Shi,
Global bifurcation analysis and pattern formation inhomogeneous diffusive predator-prey systems, J. Diff. Equat., 260 (2016), 3495-3523.
doi: 10.1016/j.jde.2015.10.036. |
[28] |
M. X. Wang,
Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D, 196 (2004), 172-192.
doi: 10.1016/j.physd.2004.05.007. |
[29] |
M. X. Wang and Q. Y. Zhang,
Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Cont. Dyn. Syst. A, 38 (2018), 2591-2607.
doi: 10.3934/dcds.2018109. |
[30] |
Y. X. Wang and W. T. Li,
Spatial patterns of the Holling-Tanner predator-prey model with nonlinear diffusion effects, Appl. Anal., 92 (2013), 2168-2181.
doi: 10.1080/00036811.2012.724402. |
[31] |
S. Wiggins,
Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second edition. Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003. |
[32] |
F. Q. Yi, J. J. Wei and J. P. Shi,
Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal.: Real World Appl., 9 (2008), 1038-1051.
doi: 10.1016/j.nonrwa.2007.02.005. |
[33] |
F. Q. Yi, J. J. Wei and J. P. Shi,
Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Equat., 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |



![]() One Hopf bifurcation value |
![]() Two Hopf bifurcation values |
Null | |
![]() One Hopf bifurcation value |
Null | Null | |
![]() One Hopf bifurcation value |
![]() Two Hopf bifurcation values |
Null | |
![]() One Hopf bifurcation value |
Null | Null | |
![]() |
![]() |
Null | |
![]() |
Null | Null | |
![]() |
![]() |
Null | |
![]() |
Null | Null | |
![]() bifurcation values |
![]() bifurcation values |
Null | |
![]() bifurcation values |
![]() bifurcation values |
![]() bifurcation values |
|
![]() bifurcation values |
![]() bifurcation values |
Null | |
![]() bifurcation values |
![]() bifurcation values |
![]() bifurcation values |
|
![]() bifurcation values |
![]() bifurcation values |
![]() bifurcation values |
|
![]() bifurcation values |
![]() bifurcation values |
Null | |
![]() bifurcation values |
![]() bifurcation values |
![]() bifurcation values |
|
![]() bifurcation values |
![]() bifurcation values |
Null | |
1 | 0.03 | 0.1 | 22.44329 | 1 | 0.1 | 1 |
2 | 0.05 | 0.1 | 11.46339 | 1 | 0.1 | 1 |
3 | 0.06 | 0.1 | 9.485507 | 1 | 0.1 | 1 |
4 | 0.06 | 0.1 | 6.305220 | 1 | 0.1 | 1 |
1 | 0.03 | 0.1 | 22.44329 | 1 | 0.1 | 1 |
2 | 0.05 | 0.1 | 11.46339 | 1 | 0.1 | 1 |
3 | 0.06 | 0.1 | 9.485507 | 1 | 0.1 | 1 |
4 | 0.06 | 0.1 | 6.305220 | 1 | 0.1 | 1 |
$b$ | $\mu$ | $\beta$ | $d_1$ | $d_2$ | $l$ | |
1 | 0.25 | 0.292 | 0.972 | 0.5 | 3 | 0.531 |
2 | 0.062 | 2.431 | 8.667 | 0.5 | 2 | 1.283 |
3 | 0.25 | 1 | 0.667 | 1 | 1 | 1 |
4 | 0.062 | 1 | 10 | 1 | 1 | 2 |
$b$ | $\mu$ | $\beta$ | $d_1$ | $d_2$ | $l$ | |
1 | 0.25 | 0.292 | 0.972 | 0.5 | 3 | 0.531 |
2 | 0.062 | 2.431 | 8.667 | 0.5 | 2 | 1.283 |
3 | 0.25 | 1 | 0.667 | 1 | 1 | 1 |
4 | 0.062 | 1 | 10 | 1 | 1 | 2 |
[1] |
Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172 |
[2] |
Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 |
[3] |
Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042 |
[4] |
Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 |
[5] |
Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133 |
[6] |
Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042 |
[7] |
C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289 |
[8] |
Shu Li, Zhenzhen Li, Binxiang Dai. Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022025 |
[9] |
Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228 |
[10] |
Jun Zhou. Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1127-1145. doi: 10.3934/cpaa.2015.14.1127 |
[11] |
Rong Zou, Shangjiang Guo. Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4189-4210. doi: 10.3934/dcdsb.2020093 |
[12] |
Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2189-2219. doi: 10.3934/dcdsb.2021129 |
[13] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[14] |
Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations and Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115 |
[15] |
Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203 |
[16] |
Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065 |
[17] |
Yong Yao, Lingling Liu. Dynamics of a Leslie-Gower predator-prey system with hunting cooperation and prey harvesting. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021252 |
[18] |
Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236 |
[19] |
Baifeng Zhang, Guohong Zhang, Xiaoli Wang. Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021260 |
[20] |
Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]