\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterization for the existence of bounded solutions to elliptic equations

Abstract Full Text(HTML) Related Papers Cited by
  • We give necessary and sufficient conditions for which the elliptic equation

    $\Delta u = \rho (x)\Phi (u)\;\;\;\;{\rm{in}}\;\;\;\;{\mathbb{R}^d}\;\;\;(d \ge 3)$

    has nontrivial bounded solutions.

    Mathematics Subject Classification: Primary: 31B05, 35B08; Secondary: 35J08, 35J91.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Alsaedi , H. Mâagli , V. D. Radulescu  and  N. Zeddini , Entire bounded solutions versus fixed points for nonlinear elliptic equations with indefinite weight, Fixed Point Theory, 17 (2016) , 255-265. 
      D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001. doi: 10.1007/978-1-4471-0233-5.
      M. Ben Chrouda  and  M. Ben Fredj , Nonnegative entire bounded solutions to some semilinear equations involving the fractional laplacian, Potential Anal, 48 (2018) , 495-513.  doi: 10.1007/s11118-017-9645-7.
      J. Bliedtner and W. Hansen, Potential Theory, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-71131-2.
      K. L. Chung, Lectures from Markov Processes to Brownian Motion, Springer, Verlag, Berlin, 1982.
      Ph. Clément  and  G. Sweers , Getting a solution between sub and supersolutions without monotone iteration, Rend. Istit. Mat. Univ. Trieste, 19 (1987) , 189-194. 
      L. Dupaigne , M. Ghergu , O. Goubet  and  G. Warnault , Entire large solutions for semilinear elliptic equations, J. Differential Equations, 253 (2012) , 2224-2251.  doi: 10.1016/j.jde.2012.05.024.
      E. B. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations, American Math. Soc, Providence, Rhode Island, Colloquium Publications, 2002. doi: 10.1090/coll/050.
      K. El Mabrouk , Entire bounded solutions for a class of sublinear elliptic equations, Nonlinear Anal, 58 (2004) , 205-218.  doi: 10.1016/j.na.2004.01.004.
      N. Kawano , On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J, 14 (1984) , 125-158. 
      O. D. Kellogg, Foundations of Potential Theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York, 1967.
      A. V. Lair  and  A. W. Wood , Large solutions of sublinear elliptic equations, Nonlinear Anal, 39 (2000) , 745-753.  doi: 10.1016/S0362-546X(98)00233-8.
      J. F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Originally published by Birkhliuser Verlag, 1999. doi: 10.1007/978-3-0348-8683-3.
      M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter Series in Nonlinear Analysis and Applications, 21 2014.
      M. Naito , A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J, 14 (1984) , 211-214. 
      W. M. Ni , On the elliptic equation $Δ u + K(x) u^{\frac{n+2}{n-2}}=0$, its generalizations and applications in geometry, Indiana Univ. Math. J, 31 (1982) , 493-529.  doi: 10.1512/iumj.1982.31.31040.
      S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York-London, 1978.
      D. Sattinger, Topics in Stability and Bifurcation Theory, Lecture notes in Mathematics 309, Springer-Verlag, Berlin/Heidelberg/New york, 1973.
      M. Sharpe, General Theory of Markov Processes, Academic Press, Boston, 1988.
      H. Yamabe , On a deformation of Riemannian structures on compact manifolds, Osaka Math. J, 12 (1960) , 21-37. 
      D. Ye  and  F. Zhou , Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dynam. Systems, 12 (2005) , 413-424.  doi: 10.3934/dcds.2005.12.413.
  • 加载中
SHARE

Article Metrics

HTML views(481) PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return