In this paper, we study a class of integro-differential elliptic operators $L_{σ}$ with kernel $k(y) = a(y)/|y|^{d+σ}$, where $d≥2, σ∈(0,2)$, and the positive function $a(y)$ is homogenous and bounded. By using a purely analytic method, we construct the fundamental solution $Φ$ of $L_{σ}$ if $a(y)$ satisfies a natural cancellation assumption and $|a(y)-1|$ is small. Furthermore, we show that the fundamental solution $Φ$ is $-α^{*}$ homogeneous and Lipschitz continuous, where the constant $α^{*}∈(0,d)$. A Liouville-type theorem demonstrates that the fundamental solution $Φ$ is the unique nontrivial solution of $L_{σ}u = 0$ in $\mathbb{R}^{d}\setminus\{0\}$ that is bounded from below.
Citation: |
W. Ao
, J. Wei
and W. Yang
, Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials, Discrete Contin. Dynami. Systems, 37 (2017)
, 5561-5601.
doi: 10.3934/dcds.2017242.![]() ![]() ![]() |
|
S. N. Armstrong
, B. Sirakov
and C. K. Smart
, Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math., 64 (2011)
, 737-777.
doi: 10.1002/cpa.20360.![]() ![]() ![]() |
|
S. N. Armstrong
, B. Sirakov
and C. K. Smart
, Singular solutions of fully nonlinear elliptic equations and applications, Arch. Rational Mech. Anal., 205 (2013)
, 345-394.
doi: 10.1007/s00205-012-0505-8.![]() ![]() ![]() |
|
R. F. Bass
and M. Kassmann
, Harnack inequalities for non-local operators of variable order, Trans. Amer. Math. Soc., 357 (2005)
, 837-850.
doi: 10.1090/S0002-9947-04-03549-4.![]() ![]() ![]() |
|
M. Bôcher
, Singular points of functions which satisfy partial differential equations of the elliptic type, Bull. Amer. Math. Soc., 9 (1903)
, 455-465.
doi: 10.1090/S0002-9904-1903-01017-9.![]() ![]() ![]() |
|
K. Bogdan
, T. Kulczycki
and A. Nowak
, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002)
, 541-556.
![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. I. Poincaré, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
L. Caffarelli
, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math.(2), 130 (1989)
, 189-213.
doi: 10.2307/1971480.![]() ![]() ![]() |
|
L. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, Vol. 43, Providence, R.I., 1995.
doi: 10.1090/coll/043.![]() ![]() ![]() |
|
L. Caffarelli
, Y. Y. Li
and L. Nirenberg
, Some remarks on singular solutions of nonlinear elliptic equations. Ⅰ, J. Fixed point Theory Appl., 5 (2009)
, 353-395.
doi: 10.1007/s11784-009-0107-8.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009)
, 597-638.
doi: 10.1002/cpa.20274.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, The Evans-Krylov theorem for non local fully non linear equations, Ann. of Math., 174 (2011)
, 1163-1187.
doi: 10.4007/annals.2011.174.2.9.![]() ![]() ![]() |
|
W. Chen
, L. D'Ambrosio
and Y. Li
, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal., 121 (2015)
, 370-381.
doi: 10.1016/j.na.2014.11.003.![]() ![]() ![]() |
|
Y. Chen
and C. Wei
, Partial regularity of solutions to the fractional Navier-Stokes equations, Discrete Contin. Dynami. Systems, 36 (2016)
, 5309-5322.
doi: 10.3934/dcds.2016033.![]() ![]() ![]() |
|
Z. Chen
and X. Zhang
, Heat kernels and analyticity of non-symmetric jump diffusion semigroups, Probab. Theory Relat. Fields, 165 (2016)
, 267-312.
doi: 10.1007/s00440-015-0631-y.![]() ![]() ![]() |
|
T. Cheng
, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dynami. Systems, 37 (2017)
, 3587-3599.
doi: 10.3934/dcds.2017154.![]() ![]() ![]() |
|
H. Dong
and D. Kim
, On $ L^{p}$-estimates for a class of non-local elliptic equations, J. Funct. Anal., 262 (2012)
, 1166-1199.
doi: 10.1016/j.jfa.2011.11.002.![]() ![]() ![]() |
|
H. Dong
and D. Kim
, Schauder estimates for a class of non-local elliptic equations, Discrete Contin. Dynami. Systems, 33 (2013)
, 2319-2347.
doi: 10.3934/dcds.2013.33.2319.![]() ![]() ![]() |
|
P. Felmer
and A. Quaas
, Fundamental solutions for a class of Isaacs integral operators, Discrete Contin. Dynami. Systems, 30 (2011)
, 493-508.
doi: 10.3934/dcds.2011.30.493.![]() ![]() ![]() |
|
P. Felmer
and A. Quaas
, Fundamental solutions and Liouville type theorems for nonlinear operators, Adv. Math., 226 (2011)
, 2712-2738.
doi: 10.1016/j.aim.2010.09.023.![]() ![]() ![]() |
|
D. Gilbarg
and J. Serrin
, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math., 4 (1955/56)
, 309-340.
doi: 10.1007/BF02787726.![]() ![]() ![]() |
|
D. Gilbarg and S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, New York, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
|
D. Labutin
, Removable singularities for fully nonlinear elliptic equations, Arch. Rational Mech. Anal., 155 (2000)
, 201-214.
doi: 10.1007/s002050000108.![]() ![]() ![]() |
|
D. Labutin
, Isolated singularities for fully nonlinear elliptic equations, J. Differential Equations, 177 (2001)
, 49-76.
doi: 10.1006/jdeq.2001.3998.![]() ![]() ![]() |
|
L. Silvestre
, Hölder estimates for solutions of integro differential equations like the fractional laplace, Indiana Univ. Math. J., 55 (2006)
, 1155-1174.
doi: 10.1512/iumj.2006.55.2706.![]() ![]() ![]() |
|
E. M. Stein, Singular Integrals and Differential Property of Functions, Princeton press, Princeton, 1970.
![]() ![]() |
|
P. R. Stinga
and J. L. Torrea
, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010)
, 2092-2122.
doi: 10.1080/03605301003735680.![]() ![]() ![]() |
|
L. Véron, Singularities of Solutions of Second Order Quasilinear Equations, Pitman research notes in mathematics Series, 353. Longman. Harlow, 1996.
![]() ![]() |
|
Z. Wang
and H. Zhou
, Radial sign-changing solution for fractional Schrödinger equation, Discrete Contin. Dynami. Systems, 36 (2016)
, 499-508.
doi: 10.3934/dcds.2016.36.499.![]() ![]() ![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, A Liouville theorem for the fractional Laplacian, Mathematics, 2 (2014)
, 423-452.
![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dynami. Systems, 36 (2016)
, 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |