We establish the existence of nontrivial solutions for the following quasilinear Schrödinger equation with subcritical or critical growth:
$ \begin{equation*}-Δ u+W(x)u^{2α-1}-ul'(u^2)Δ l(u^2) = f(u) \ \mbox{or}\ h(u)+u^{2^*-1},\ x∈\mathbb{R}^N,\end{equation*} $
where $W(x):\mathbb{R}^N \to \mathbb{R} $ is a given potential and $ l,h,f $ are real functions, $ u>0,$ $ 2^* = 2N/(N-2), $ $ N≥3 $. Our results cover physical models $ l(s) = s^{\frac{α}{2}}, $ $ \frac{1}{2}<α<1. $
Citation: |
S. Adachia
and T. Watanable
, G-invariant positive solutions for a quasilinear Schrödinger equation, Adv. Diff. Eqns., 16 (2011)
, 289-324.
![]() ![]() |
|
S. Adachia
and T. Watanable
, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonl. Anal. TMA., 75 (2012)
, 819-833.
doi: 10.1016/j.na.2011.09.015.![]() ![]() ![]() |
|
C. O. Alves
, Y. J. Wang
and Y. T. Shen
, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations, 259 (2015)
, 318-343.
doi: 10.1016/j.jde.2015.02.030.![]() ![]() ![]() |
|
A. Ambrosetti
and P. H. Rabinowitz
, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973)
, 349-381.
doi: 10.1016/0022-1236(73)90051-7.![]() ![]() ![]() |
|
H. Berestycki
and P. L. Lions
, Nonlinear scalar field equations Ⅰ, Arch. Rational Mech. Anal., 82 (1983)
, 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
|
J. M. Bezerra do Ó
, O. H. Miyagaki
and S. H. M. Soares
, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010)
, 722-744.
doi: 10.1016/j.jde.2009.11.030.![]() ![]() ![]() |
|
H. Brézis
and L. Nirenberg
, Positive solutions of nonlinear elliptic equations involving critical
Soblev exponent, Comm. Pure. Appl. Math, 36 (1983)
, 437-477.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
|
Y. K. Cheng
and Y. T. Shen
, Generalized quasilinear Schrödinger equations with critical
growth, Appl. Math. Lett., 65 (2017)
, 106-112.
doi: 10.1016/j.aml.2016.10.011.![]() ![]() ![]() |
|
M. Colin
and L. Jeanjean
, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonl. Anal. TMA., 56 (2004)
, 213-226.
doi: 10.1016/j.na.2003.09.008.![]() ![]() ![]() |
|
D. G. Costa
and C. A. Magalhães
, Variational elliptic problems which are non-quadratic at infinity, Nonlinear. Anal. TMA., 23 (1994)
, 1401-1412.
doi: 10.1016/0362-546X(94)90135-X.![]() ![]() ![]() |
|
Y. B. Deng
, S. J. Peng
and S. S. Yan
, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015)
, 115-147.
doi: 10.1016/j.jde.2014.09.006.![]() ![]() ![]() |
|
Y. B. Deng
, S. J. Peng
and S. S. Yan
, Critical exponents and solitary wave solutions for
generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016)
, 1228-1262.
doi: 10.1016/j.jde.2015.09.021.![]() ![]() ![]() |
|
W. Huang
and J. Xiang
, Soliton solutions for a quasilinear Schrödinger equation with critical exponent, Comm. Pure Appl. Anal., 15 (2016)
, 1309-1333.
doi: 10.3934/cpaa.2016.15.1309.![]() ![]() ![]() |
|
L. Jeanjean
and K. Tanaka
, A remark on least energy solution in $ \mathbb{R}^{N} $, Proc. Amer. Math. Soc., 131 (2003)
, 2399-2408.
doi: 10.1090/S0002-9939-02-06821-1.![]() ![]() ![]() |
|
L. Jeanjean
, On the existence of bounded Palis-Smale sequence and application to a
Landesman-Lazer type problem set on $ {{\mathbb{R}}^{N}} $, Proc. Roy. Soc. Edinburgn A, 129 (1999)
, 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() ![]() |
|
G. Li
, Positive solution for quasilinear Schrödinger Equations with a parameter, Comm. Pure. Appl. Anal,, 14 (2015)
, 1803-1816.
doi: 10.3934/cpaa.2015.14.1803.![]() ![]() ![]() |
|
P. L. Lions
, The concentration compactness principle in the calculus of variations, the locally compact case, parts Ⅰ and Ⅱ, Ann. Inst. H. Poincaré Anal. Non. Lineairé., 1 (1984)
, 223-283.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
|
J. Q. Liu
, Y. Q. Wang
and Z. Q. Wang
, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003)
, 473-493.
doi: 10.1016/S0022-0396(02)00064-5.![]() ![]() ![]() |
|
J. Q. Liu
and Z. Q. Wang
, Soliton solutions for quasilinear Schrödinger equations Ⅰ, Proc. Amer. Math. Soc., 131 (2003)
, 441-448.
doi: 10.1090/S0002-9939-02-06783-7.![]() ![]() ![]() |
|
X. Q. Liu
, J. Q. Liu
and Z. Q. Wang
, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013)
, 102-124.
doi: 10.1016/j.jde.2012.09.006.![]() ![]() ![]() |
|
Y. T. Shen and X. K. Guo, Discussion of nontrivial critical points of the functional $\int_{\Omega }{F(x,u,Du)\text{d}x}$, Acta. Math. Sci., 10 (1990), 249-258(in Chinese).
![]() ![]() |
|
Y. T. Shen
and Y. J. Wang
, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Analysis TMA, 80 (2013)
, 194-201.
doi: 10.1016/j.na.2012.10.005.![]() ![]() ![]() |
|
Y. T. Shen
and Y. J. Wang
, A class of generalized quasilinear Schrödinger equations, Comm. Pure Appl. Anal., 15 (2016)
, 853-870.
doi: 10.3934/cpaa.2016.15.853.![]() ![]() ![]() |
|
E. A. B. Silva
and G. F. Vieira
, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010)
, 1-33.
doi: 10.1007/s00526-009-0299-1.![]() ![]() ![]() |
|
M. Willem,
Minimax Theorems, Birkhäuser, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |