In this paper, we consider a nonlinear equation involving fractional Laplacian of higher order on the whole space. We establish the equivalence between the pseudo-differential equation and an integral equation by applying the maximum principle and the Liouville theorem. For positive solutions to the equation, we obtained non-existence by applying the method of moving planes.
Citation: |
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
|
K. Bogdan
, T. Kulczycki
and A. Nowak
, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002)
, 541-556.
![]() ![]() |
|
C. Brandle
, E. Colorado
, A. de Pablo
and U. Sanchez
, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013)
, 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann Inst H Poincaré Anal NonLinéaire, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
X. Cabré
and J. Tan
, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. in Math., 224 (2010)
, 2052-2093.
doi: 10.1016/j.aim.2010.01.025.![]() ![]() ![]() |
|
L. Caffarelli
, B. Gidas
and J. Spruck
, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989)
, 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. Caffarelli
and A. Vasseur
, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
M. Cai
and L. Ma
, Moving planes for nonlinear fractional Laplacian equation with negative powers, Disc. Cont. Dyn. Syst., 38 (2018)
, 4603-4615.
doi: 10.3934/dcds.2018201.![]() ![]() ![]() |
|
G. Caristi
, L. D Ambrosio
and E. Mitidieri
, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008)
, 27-67.
doi: 10.1007/s00032-008-0090-3.![]() ![]() ![]() |
|
W. Chen
, Y. Fang
and R. Yang
, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015)
, 167-198.
doi: 10.1016/j.aim.2014.12.013.![]() ![]() ![]() |
|
W. Chen
, C. Li
and Y. Li
, A direct method of moving planes for the fractional Laplacian, Advances in Math., 308 (2017)
, 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006)
, 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Syst., 12 (2005)
, 347-354.
doi: 10.3934/dcds.2005.12.347.![]() ![]() ![]() |
|
W. Chen
and J. Zhu
, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016)
, 2758-2785.
doi: 10.1016/j.jde.2015.11.029.![]() ![]() ![]() |
|
T. Cheng
, Monotonicity and symmetry of solutions to fractional Laplacian equation, Disc. Cont. Dyn. Syst., 37 (2017)
, 3587-3599.
doi: 10.3934/dcds.2017154.![]() ![]() ![]() |
|
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of Lecture Notes in Math, (2006), Springer, Berlin, 1–43.
doi: 10.1007/11545989_1.![]() ![]() ![]() |
|
L. D Ambrosio
and E. Mitidieri
, Hardy-Littlewood-Sobolev systems and related Liouville theorems, Discrete Contin. Dyn. Syst., 7 (2014)
, 653-671.
doi: 10.3934/dcdss.2014.7.653.![]() ![]() ![]() |
|
L. Dupaigne and Y. Sire, A Liouville theorem for nonlocal elliptic equations, in: Symmetry for Elliptic PDEs, in: Contemp. Math., vol. 528, Amer. Math. Soc. Providence, RI, 2010,105–114.
doi: 10.1090/conm/528/10417.![]() ![]() ![]() |
|
P. Felmer
, A. Quaas
and J. Tan
, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh, 142A (2012)
, 1237-1262.
doi: 10.1017/S0308210511000746.![]() ![]() ![]() |
|
P. Felmer
and W. Wang
, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014)
, 1350023, 24 pp.
doi: 10.1142/S0219199713500235.![]() ![]() ![]() |
|
B. Gidas
, W. Ni
and L. Nirenberg
, Symmetry and the related properties via the maximum principle, Comm. Math. Phys., 68 (1979)
, 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
|
N. Guillen
and R. W. Schwab
, Aleksandrov-Bakelman-Pucci Type Estimates for Integro-Differential Equations, Arch. Rat. Mech. Anal., 206 (2012)
, 111-157.
doi: 10.1007/s00205-012-0529-0.![]() ![]() ![]() |
|
T. Kulczycki
, Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997)
, 339-364.
![]() ![]() |
|
N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag Berlin Heidelberg, New York, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.
![]() ![]() |
|
N. Laskin
, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000)
, 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
|
Y. Y. Li
, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004)
, 153-180.
![]() ![]() |
|
A. Mellet
, S. Mischler
and C. Mouhot
, Fractional diffusion limit for collisional kinetic equations, Arch. Rational Mech. Anal., 199 (2011)
, 493-525.
doi: 10.1007/s00205-010-0354-2.![]() ![]() ![]() |
|
R. Metzler
and J. Klafter
, The restaurant at the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004)
, 161-208.
doi: 10.1088/0305-4470/37/31/R01.![]() ![]() ![]() |
|
A. Quaas
and X. Aliang
, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var., 52 (2015)
, 641-659.
doi: 10.1007/s00526-014-0727-8.![]() ![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
Y. Sire
and E. Valdinoci
, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009)
, 1842-1864.
doi: 10.1016/j.jfa.2009.01.020.![]() ![]() ![]() |
|
J. Tan
and J. Xiong
, A Harnack inequality for fractional Laplace equations with lower order terms, Disc. Cont. Dyn. Syst., 31 (2011)
, 975-983.
doi: 10.3934/dcds.2011.31.975.![]() ![]() ![]() |
|
V. Tarasov
and G. Zaslasvky
, Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006)
, 885-898.
doi: 10.1016/j.cnsns.2006.03.005.![]() ![]() ![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Disc. Cont. Dyn. Syst., 36 (2016)
, 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |