We are concerned with Hölder regularity estimates for weak solutions $u$ to nonlocal Schrödinger equations subject to exterior Dirichlet conditions in an open set $\Omega\subset \mathbb{R}^N$. The class of nonlocal operators considered here are defined, via Dirichlet forms, by symmetric kernels $K(x, y)$ bounded from above and below by $|x-y|^{-N-2s}$, with $s\in (0, 1)$. The entries in the equations are in some Morrey spaces and the domain $\Omega$ satisfies some mild regularity assumptions. In the particular case of the fractional Laplacian, our results are new. When $K$ defines a nonlocal operator with sufficiently regular coefficients, we obtain Hölder estimates, up to the boundary of $ \Omega$, for $u$ and the ratio $u/d^s$, with $d(x) = \text{dist}(x, \mathbb{R}^N\setminus\Omega)$. If the kernel $K$ defines a nonlocal operator with Hölder continuous coefficients and the entries are Hölder continuous, we obtain interior $C^{2s+\beta}$ regularity estimates of the weak solutions $u$. Our argument is based on blow-up analysis and compact Sobolev embedding.
Citation: |
G. Barles
, E. Chasseigne
and C. Imbert
, Hölder continuity of solutions of second-order elliptic integro-differential equations, J. Eur. Math. Soc., 13 (2011)
, 1-26.
doi: 10.4171/JEMS/242.![]() ![]() ![]() |
|
G. Barles
, E. Chasseigne
and C. Imbert
, The Dirichlet problem for second-order elliptic integro-differential equations, Indiana Univ. Math. J., 57 (2008)
, 213-246.
doi: 10.1512/iumj.2008.57.3315.![]() ![]() ![]() |
|
B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 609–639.
![]() ![]() |
|
R. Bass
and D. Levin
, Harnack inequalities for jump processes, Potential Anal., 17 (2002)
, 375-388.
doi: 10.1023/A:1016378210944.![]() ![]() ![]() |
|
K. Bogdan
, T. Kumagai
and M. Kwasnicki
, Boundary Harnack inequality for Markov processes with jumps, Trans. Amer. Math. Soc., 367 (2015)
, 477-517.
doi: 10.1090/S0002-9947-2014-06127-8.![]() ![]() ![]() |
|
K. Bogdan
and T. Byczkowski
, Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Studia Math., 133 (1999)
, 53-92.
doi: 10.4064/sm-133-1-53-92.![]() ![]() ![]() |
|
K. Bogdan
, The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1997)
, 43-80.
doi: 10.4064/sm-123-1-43-80.![]() ![]() ![]() |
|
L. Caffarelli
, X. Ros-Oton
and J. Serra
, Obstacle problems for integro-differential operators: Regularity of solutions and free boundaries, Invent. Math., 208 (2017)
, 1155-1211.
doi: 10.1007/s00222-016-0703-3.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009)
, 597-638.
doi: 10.1002/cpa.20274.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, Regularity results for nonlocal equations by approximation, Arch. Rat. Mech. Anal., 200 (2011)
, 59-88.
doi: 10.1007/s00205-010-0336-4.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, The Evans-Krylov theorem for nonlocal fully nonlinear equations, Ann. of Math., 174 (2011)
, 1163-1187.
doi: 10.4007/annals.2011.174.2.9.![]() ![]() ![]() |
|
L. Caffarelli
, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989)
, 189-213.
doi: 10.2307/1971480.![]() ![]() ![]() |
|
Z.-Q. Chen
and R. Song
, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998)
, 465-501.
doi: 10.1007/s002080050232.![]() ![]() ![]() |
|
Y. Chen
, Regularity of the solution to the Dirichlet problem in Morrey spaces, J. Partial Differential Equations, 15 (2002)
, 37-46.
![]() ![]() |
|
M. Costabel
, M. Dauge
and R. Duduchava
, Asymptotics without logarithmic terms for crack problems, Comm. Partial Differential Equations, 28 (2003)
, 869-926.
doi: 10.1081/PDE-120021180.![]() ![]() ![]() |
|
M. Cozzi
, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes, J. Funct. Anal., 272 (2017)
, 4762-4837.
doi: 10.1016/j.jfa.2017.02.016.![]() ![]() ![]() |
|
A. Di Castro
, T. Kuusi
and G. Palatucci
, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire. V., 33 (2016)
, 1279-1299.
doi: 10.1016/j.anihpc.2015.04.003.![]() ![]() ![]() |
|
G. Di Fazio
, Hölder continuity of solutions for some Schrödinger equations, Rend. Sem. Mat. Univ. di Padova, 79 (1988)
, 173-183.
![]() ![]() |
|
M. M. Fall and X. Ros-Oton, Nonlocal Schrödinger equations with potentials in Kato class, Forthcoming.
![]() |
|
M. M. Fall, Regularity results for nonlocal equations and applications, https://arXiv.org/abs/1806.09139.
![]() |
|
M. M. Fall
and T. Weth
, Liouville theorems for a general class of nonlocal operators, Potential Anal., 45 (2016)
, 187-200.
doi: 10.1007/s11118-016-9546-1.![]() ![]() ![]() |
|
M. Felsinger
, M. Kassmann
and P. Voigt
, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015)
, 779-809.
doi: 10.1007/s00209-014-1394-3.![]() ![]() ![]() |
|
X. Fernández-Real
and X. Ros-Oton
, Regularity theory for general stable operators: Parabolic equations, J. Funct. Anal., 272 (2017)
, 4165-4221.
doi: 10.1016/j.jfa.2017.02.015.![]() ![]() ![]() |
|
X. Fernández-Real
and X. Ros-Oton
, Boundary regularity for the fractional heat equation, Rev. Acad. Cienc. Ser. A Math., 110 (2016)
, 49-64.
doi: 10.1007/s13398-015-0218-6.![]() ![]() ![]() |
|
G. Franzina
and G. Palatucci
, Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014)
, 373-386.
![]() ![]() |
|
L. Geisinger, A short proof of Weyl's law for fractional differential operators, J. Math. Phys., 55 (2014), 011504, 7pp.
doi: 10.1063/1.4861935.![]() ![]() ![]() |
|
D. Gilbarg and N. Trudinger, l S. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.
![]() ![]() |
|
W. B. Gordon
, On the diffeomorphisms of Euclidean space, Amer. Math. Monthly, 79 (1972)
, 755-759.
doi: 10.1080/00029890.1972.11993118.![]() ![]() ![]() |
|
L. Grafakos, Modern Fourier Analysis, Second edition. Graduate Texts in Mathematics, 250. Springer, New York, 2009.
doi: 10.1007/978-0-387-09434-2.![]() ![]() ![]() |
|
G. Grubb
, Fractional Laplacians on domains, a development of Hormander's theory of μ-transmission pseudodifferential operators, Adv. Math., 268 (2015)
, 478-528.
doi: 10.1016/j.aim.2014.09.018.![]() ![]() ![]() |
|
G. Grubb
, Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators, Anal. PDE, 7 (2014)
, 1649-1682.
doi: 10.2140/apde.2014.7.1649.![]() ![]() ![]() |
|
G. Grubb
, Integration by parts and Pohozaev identities for space-dependent fractional-order operators, J. Differential Equations, 261 (2016)
, 1835-1879.
doi: 10.1016/j.jde.2016.04.017.![]() ![]() ![]() |
|
W. Hoh
and N. Jacob
, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups, J. Funct. Anal., 137 (1996)
, 19-48.
doi: 10.1006/jfan.1996.0039.![]() ![]() ![]() |
|
T. Jin
and J. Xiong
, Schauder estimates for nonlocal fully nonlinear equations, Ann. Inst. H. Poincaré Abal. Non Linnéaire, 33 (2016)
, 1375-1407.
doi: 10.1016/j.anihpc.2015.05.004.![]() ![]() ![]() |
|
M. Kassmann
, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differential Equations, 34 (2009)
, 1-21.
doi: 10.1007/s00526-008-0173-6.![]() ![]() ![]() |
|
M. Kassmann and A. Mimica, Intrinsic scaling properties for nonlocal operators Ⅱ, preprint, https://arXiv.org/abs/1412.7566.
![]() |
|
M. Kassmann
and A. Mimica
, Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc. (JEMS), 19 (2017)
, 983-1011.
doi: 10.4171/JEMS/686.![]() ![]() ![]() |
|
M. Kassmann
, M. Rang
and R. W. Schwab
, Integro-differential equations with nonlinear directional dependence, Indiana Univ. Math. J., 63 (2014)
, 1467-1498.
doi: 10.1512/iumj.2014.63.5394.![]() ![]() ![]() |
|
M. Kassmann
and R. W. Schwab
, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5 (2014)
, 183-212.
![]() ![]() |
|
D. Kriventsov
, C1, α interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Comm. Partial Differential Equations, 38 (2013)
, 2081-2106.
doi: 10.1080/03605302.2013.831990.![]() ![]() ![]() |
|
M. Kassmann, Analysis of symmetric Markov processes, A localization technique for non-local operators. Universität Bonn, Habilitation Thesis, 2007.
![]() |
|
T. Kuusi
, G. Mingione
and Y. Sire
, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015)
, 1317-1368.
doi: 10.1007/s00220-015-2356-2.![]() ![]() ![]() |
|
R. Monneau
, Pointwise Estimates for Laplace Equation. Applications to the Free Boundary of the Obstacle Problem with Dini Coefficients, Journal of Fourier Analysis and Applications, 15 (2009)
, 279-335.
doi: 10.1007/s00041-009-9066-0.![]() ![]() ![]() |
|
C. B. Morrey
, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938)
, 126-166.
doi: 10.1090/S0002-9947-1938-1501936-8.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, Boundary regularity estimates for nonlocal elliptic equations in C1 and C1, α domains, Ann. Mat. Pura Appl., 196 (2017)
, 1637-1668.
doi: 10.1007/s10231-016-0632-1.![]() ![]() ![]() |
|
X. Ros-Oton
, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016)
, 3-26.
doi: 10.5565/PUBLMAT_60116_01.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, Regularity theory for general stable operators, J. Differential Equations, 260 (2016)
, 8675-8715.
doi: 10.1016/j.jde.2016.02.033.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, Boundary regularity for fully nonlinear integro-differential equations, Duke Math. J., 165 (2016)
, 2079-2154.
doi: 10.1215/00127094-3476700.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
R. W. Schwab
and L. Silvestre
, Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016)
, 727-772.
doi: 10.2140/apde.2016.9.727.![]() ![]() ![]() |
|
J. Serra
, Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partial Differential Equations, 54 (2015)
, 3571-3601.
doi: 10.1007/s00526-015-0914-2.![]() ![]() ![]() |
|
J. Serra
, Regularity for fully nonlinear nonlocal parabolic equations with rough kernels, Calc. Var. Partial Differential Equations, 54 (2015)
, 615-629.
doi: 10.1007/s00526-014-0798-6.![]() ![]() ![]() |
|
R. Song
and J.-M. Wu
, Boundary Harnack Principle for Symmetric Stable Processes, J. Func. Anal., 168 (1999)
, 403-427.
doi: 10.1006/jfan.1999.3470.![]() ![]() ![]() |
|
E. Stein, Singular integrals and differentiability properties of functions, Princeton, University Press, 1970.
![]() ![]() |