# American Institute of Mathematical Sciences

March  2019, 39(3): 1559-1571. doi: 10.3934/dcds.2019068

## Symmetry properties in systems of fractional Laplacian equations

 1 Department of Applied Mathematics, Donghua University, Shanghai 201620, China 2 Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80302, USA

* Corresponding author: Hao Xu

Received  April 2018 Revised  May 2018 Published  December 2018

Fund Project: The first author is supported by Natural Science Foundation of Shanghai grant 16ZR1402100.

We consider the systems of fractional Laplacian equations in a domain(bounded or unbounded) in $\mathbb{R}^n$. By using a direct method of moving planes, we show that $u_i(x)$ ($i = 1,2,···,m$) are radial symmetric about the same point and strictly decreasing in the radial direction with respect to this point. Comparing with Zhuo-Chen-Cui-Yuan [38], our results not only include subcritical case and critical case but also include supercritical case, and we need not the nonlinear terms to be homogenous. In addition, we completely remove the nonnegativity of $\frac{\partial f_i}{\partial u_i}$. Above all, to the best of our knowledge, it is the first result on the symmetric property of the system containing the gradient of the solution in the nonlinear terms.

Citation: Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068
##### References:
 [1] A. D. Aleksandrov, Uniqueness theorems for surfaces in the large, Amer. Math. Soc. Transl., 21 (1962), 412-416. [2] H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, Journal of Geometry and Physics, 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X. [3] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 22 (1991), 1-37.  doi: 10.1007/BF01244896. [4] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concaveconvex elliptic problem involving the fractional Laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175. [5] J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701. [6] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001. [7] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Mathematics, 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025. [8] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306. [9] M. Cai and L. Ma, Moving planes for nonlinear fractional Lapla- cian equation with negative powers, Discrete and Continuous Dynamical Systems-Series A, 38 (2018), 4603-4615.  doi: 10.3934/dcds.2018201. [10] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Communications in Partial Differential Equations, 36 (2011), 1353-1384.  doi: 10.1080/03605302.2011.562954. [11] W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Advances in Mathematics, 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038. [12] W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029. [13] W. Chen and C. Li, Classifcation of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5. [14] W. Chen, C. Li and B. Ou, Classifcation of solutions for an integral equation, Communications on Pure and Applied Mathematics, 59 (2006), 330-343.  doi: 10.1002/cpa.20116. [15] T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Communications in Contemporary Mathematics, 19 (2017), 1750018(12pages). doi: 10.1142/S0219199717500183. [16] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, 68 (2013), 201-216. [17] P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014), 1350023(24pages). doi: 10.1142/S0219199713500235. [18] D. G. de Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 119-123.  doi: 10.1007/BF01193947. [19] D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (1994), 387-397. [20] B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Communications in Mathematical Physics, 68 (1979), 209-243.  doi: 10.1007/BF01221125. [21] B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Adv. Math. Suppl. Stud. A, 7 (1981), 369-402. [22] S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Matematica Pura ed Applicata, 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y. [23] C. Li, Z. G. Wu and H. Xu, Maximum principles and Bôcher type theorems, Pro Natl Acad Sci USA, 115 (2018), 6976-6979. [24] C. Li and Z. G. Wu, Radial symmetry for systems of fractional Laplacian, Acta Mathematica Scientia, 38 (2018), 1567-1582.  doi: 10.1016/S0252-9602(18)30832-4. [25] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Communications in Partial Differential Equations, 16 (1991), 491-526.  doi: 10.1080/03605309108820766. [26] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Communications in Partial Differential Equations, 16 (1991), 585-615.  doi: 10.1080/03605309108820770. [27] B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Analysis: Theory, Methods Applications, 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022. [28] B. Liu, Direct method of moving planes for logarithmic Laplacian system in bounded domains, Discrete and Continuous Dynamical Systems - Series A, 38 (2018), 5339-5349.  doi: 10.3934/dcds.2018235. [29] Y. Lü and C. Zhou, Symmetry for an integral system with general nonlinearity, Discrete Continuous Dynamical Systems -A, 39 (2019), 1533-1543.  doi: 10.3934/dcds.2018121. [30] L. Ma and B. Liu, Symmetry results for decay solutions of elliptic systems in the whole space, Advances in Mathematics, 225 (2010), 3052-3063.  doi: 10.1016/j.aim.2010.05.022. [31] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003. [32] J. Serrin, A symmetry problem in potential theory, Archive for Rational Mechanics and Analysis, 43 (1971), 304-318.  doi: 10.1007/BF00250468. [33] R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, Journal Mathematical Analysis Applications, 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032. [34] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications Pure Applied Mathematics, 60 (2007), 67-112.  doi: 10.1002/cpa.20153. [35] B. Sirakov, On symmetry in elliptic systems, Appl. Anal., 41 (1991), 1-9.  doi: 10.1080/00036819108840012. [36] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981), 400-413.  doi: 10.1016/0022-0396(81)90113-3. [37] L. Zhang, C. Li, W. Chen and T. Cheng, A Liouville theorem for $α$-harmonic functions in $\mathbb{R}_+^n$, Discrete Continuous Dynamical Systems -A, 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721. [38] R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian, Discrete Continuous Dynamical Systems -A, 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.

show all references

##### References:
 [1] A. D. Aleksandrov, Uniqueness theorems for surfaces in the large, Amer. Math. Soc. Transl., 21 (1962), 412-416. [2] H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, Journal of Geometry and Physics, 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X. [3] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 22 (1991), 1-37.  doi: 10.1007/BF01244896. [4] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concaveconvex elliptic problem involving the fractional Laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175. [5] J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701. [6] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001. [7] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Mathematics, 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025. [8] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306. [9] M. Cai and L. Ma, Moving planes for nonlinear fractional Lapla- cian equation with negative powers, Discrete and Continuous Dynamical Systems-Series A, 38 (2018), 4603-4615.  doi: 10.3934/dcds.2018201. [10] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Communications in Partial Differential Equations, 36 (2011), 1353-1384.  doi: 10.1080/03605302.2011.562954. [11] W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Advances in Mathematics, 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038. [12] W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029. [13] W. Chen and C. Li, Classifcation of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5. [14] W. Chen, C. Li and B. Ou, Classifcation of solutions for an integral equation, Communications on Pure and Applied Mathematics, 59 (2006), 330-343.  doi: 10.1002/cpa.20116. [15] T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Communications in Contemporary Mathematics, 19 (2017), 1750018(12pages). doi: 10.1142/S0219199717500183. [16] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, 68 (2013), 201-216. [17] P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014), 1350023(24pages). doi: 10.1142/S0219199713500235. [18] D. G. de Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 119-123.  doi: 10.1007/BF01193947. [19] D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (1994), 387-397. [20] B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Communications in Mathematical Physics, 68 (1979), 209-243.  doi: 10.1007/BF01221125. [21] B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Adv. Math. Suppl. Stud. A, 7 (1981), 369-402. [22] S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Matematica Pura ed Applicata, 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y. [23] C. Li, Z. G. Wu and H. Xu, Maximum principles and Bôcher type theorems, Pro Natl Acad Sci USA, 115 (2018), 6976-6979. [24] C. Li and Z. G. Wu, Radial symmetry for systems of fractional Laplacian, Acta Mathematica Scientia, 38 (2018), 1567-1582.  doi: 10.1016/S0252-9602(18)30832-4. [25] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Communications in Partial Differential Equations, 16 (1991), 491-526.  doi: 10.1080/03605309108820766. [26] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Communications in Partial Differential Equations, 16 (1991), 585-615.  doi: 10.1080/03605309108820770. [27] B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Analysis: Theory, Methods Applications, 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022. [28] B. Liu, Direct method of moving planes for logarithmic Laplacian system in bounded domains, Discrete and Continuous Dynamical Systems - Series A, 38 (2018), 5339-5349.  doi: 10.3934/dcds.2018235. [29] Y. Lü and C. Zhou, Symmetry for an integral system with general nonlinearity, Discrete Continuous Dynamical Systems -A, 39 (2019), 1533-1543.  doi: 10.3934/dcds.2018121. [30] L. Ma and B. Liu, Symmetry results for decay solutions of elliptic systems in the whole space, Advances in Mathematics, 225 (2010), 3052-3063.  doi: 10.1016/j.aim.2010.05.022. [31] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003. [32] J. Serrin, A symmetry problem in potential theory, Archive for Rational Mechanics and Analysis, 43 (1971), 304-318.  doi: 10.1007/BF00250468. [33] R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, Journal Mathematical Analysis Applications, 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032. [34] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications Pure Applied Mathematics, 60 (2007), 67-112.  doi: 10.1002/cpa.20153. [35] B. Sirakov, On symmetry in elliptic systems, Appl. Anal., 41 (1991), 1-9.  doi: 10.1080/00036819108840012. [36] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981), 400-413.  doi: 10.1016/0022-0396(81)90113-3. [37] L. Zhang, C. Li, W. Chen and T. Cheng, A Liouville theorem for $α$-harmonic functions in $\mathbb{R}_+^n$, Discrete Continuous Dynamical Systems -A, 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721. [38] R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian, Discrete Continuous Dynamical Systems -A, 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.
 [1] Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015 [2] Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 [3] Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201 [4] Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082 [5] Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462 [6] Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 [7] Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343 [8] Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013 [9] De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431 [10] Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 [11] Xiaoming He, Xin Zhao, Wenming Zou. Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4387-4399. doi: 10.3934/cpaa.2020200 [12] Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813 [13] Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125 [14] Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947 [15] Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121 [16] Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038 [17] Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435 [18] A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373 [19] Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347 [20] Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure and Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

2021 Impact Factor: 1.588