\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic limit and decay estimates for a class of dissipative linear hyperbolic systems in several dimensions

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study the large-time behavior of solutions to a class of partially dissipative linear hyperbolic systems with applications in, for instance, the velocity-jump processes in several dimensions. Given integers $ n,d\ge 1 $, let $ \mathbf A: = (A^1,\dots,A^d)\in (\mathbb R^{n\times n})^d $ be a matrix-vector and let $ B\in \mathbb R^{n\times n} $ be not necessarily symmetric but have one single eigenvalue zero, we consider the Cauchy problem for $ n\times n $ linear systems having the form

    $ \begin{equation*} \partial_{t}u+\mathbf A\cdot \nabla_{\mathbf x} u+Bu = 0,\qquad (\mathbf x,t)\in \mathbb R^d\times \mathbb R_+. \end{equation*} $

    Under appropriate assumptions, we show that the solution $ u $ is decomposed into $ u = u^{(1)}+u^{(2)} $ such that the asymptotic profile of $ u^{(1)} $ denoted by $ U $ is a solution to a parabolic equation, $ u^{(1)}-U $ decays at the rate $ t^{-\frac d2(\frac 1q-\frac 1p)-\frac 12} $ as $ t\to +\infty $ in any $ L^p $-norm and $ u^{(2)} $ decays exponentially in $ L^2 $-norm, provided $ u(\cdot,0)\in L^q(\mathbb R^d)\cap L^2(\mathbb R^d) $ for $ 1\le q\le p\le \infty $. Moreover, $ u^{(1)}-U $ decays at the optimal rate $ t^{-\frac d2(\frac 1q-\frac 1p)-1} $ as $ t\to +\infty $ if the original system satisfies a symmetry property. The main proofs are based on the asymptotic expansions of the fundamental solution in the frequency space and the Fourier analysis.

    Mathematics Subject Classification: Primary: 35L45; Secondary: 35C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.
    [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-Heidelberg, 1976.
    [3] S. BianchiniB. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., 60 (2007), 1559-1622.  doi: 10.1002/cpa.20195.
    [4] A. Bressan, An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. 
    [5] G. CraciunA. Brown and A. Friedman, A dynamical system model of neurofilament transport in axons, J. Theoret. Biol., 237 (2005), 316-322.  doi: 10.1016/j.jtbi.2005.04.018.
    [6] S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation, Quart. J. Mech. Appl. Math., 4 (1951), 129-156.  doi: 10.1093/qjmam/4.2.129.
    [7] T. Hosono and T. Ogawa, Large time behavior and Lp-Lq estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203 (2004), 82-118.  doi: 10.1016/j.jde.2004.03.034.
    [8] M. Kac, A stochastic model related to the telegrapher's equation. Reprinting of an article published in 1956, Papers arising from a Conference on Stochastic Differential Equations (Univ. Alberta, Edmonton, Alta., 1972), Rocky Mountain J. Math., 4 (1974), 497–509. doi: 10.1216/RMJ-1974-4-3-497.
    [9] T. Kato, Perturbation Theory For Linear Operators, Springer-Verlag, Berlin, 1995.
    [10] S. Kawashima, Global existence and stability of solutions for discrete velocity models of the Boltzmann equation, North-Holland Math. Stud., 98 (1984), 59-85.  doi: 10.1016/S0304-0208(08)71492-0.
    [11] P. Marcati and K. Nishihara, The Lp-Lq estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations, 191 (2003), 445-469.  doi: 10.1016/S0022-0396(03)00026-3.
    [12] C. Mascia, Exact representation of the asymptotic drift speed and diffusion matrix for a class of velocity-jump processes, J. Differential Equations, 260 (2016), 401-426.  doi: 10.1016/j.jde.2015.08.043.
    [13] C. Mascia and T. T. NguyenLp-Lq decay estimates for dissipative linear hyperbolic systems in 1D, J. Differential Equations, 263 (2017), 6189-6230.  doi: 10.1016/j.jde.2017.07.011.
    [14] T. NarazakiLp-Lq estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626.  doi: 10.2969/jmsj/1191418647.
    [15] K. NishiharaLp-Lq estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., 244 (2003), 631-649.  doi: 10.1007/s00209-003-0516-0.
    [16] D. Serre, Matrices. Theory and Applications, Springer-Verlag, New York, 2002.
    [17] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.
    [18] Y. UedaR. Duan and S. Kawashima, Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application, Arch. Ration. Mech. Anal., 205 (2012), 239-266.  doi: 10.1007/s00205-012-0508-5.
    [19] T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.
  • 加载中
SHARE

Article Metrics

HTML views(247) PDF downloads(265) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return