# American Institute of Mathematical Sciences

April  2019, 39(4): 1685-1730. doi: 10.3934/dcds.2019074

## Riccati equations for linear Hamiltonian systems without controllability condition

 Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic

Dedicated to the memory of Professor Russell A. Johnson.

Received  August 2017 Revised  July 2018 Published  January 2019

Fund Project: This research was supported by the Czech Science Foundation under grant GA16-00611S.

In this paper we develop new theory of Riccati matrix differential equations for linear Hamiltonian systems, which do not require any controllability assumption. When the system is nonoscillatory, it is known from our previous work that conjoined bases of the system with eventually the same image form a special structure called a genus. We show that for every such a genus there is an associated Riccati equation. We study the properties of symmetric solutions of these Riccati equations and their connection with conjoined bases of the system. For a given genus, we pay a special attention to distinguished solutions at infinity of the associated Riccati equation and their relationship with the principal solutions at infinity of the system in the considered genus. We show the uniqueness of the distinguished solution at infinity of the Riccati equation corresponding to the minimal genus. This study essentially extends and completes the work of W. T. Reid (1964, 1972), W. A. Coppel (1971), P. Hartman (1964), W. Kratz (1995), and other authors who considered the Riccati equation and its distinguished solution at infinity for invertible conjoined bases, i.e., for the maximal genus in our setting.

Citation: Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074
##### References:

show all references

Dedicated to the memory of Professor Russell A. Johnson.

##### References:
 [1] Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 [2] Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251 [3] Ahmad El Hajj, Aya Oussaily. Continuous solution for a non-linear eikonal system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3795-3823. doi: 10.3934/cpaa.2021131 [4] Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014 [5] Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 [6] Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040 [7] Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95 [8] Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841 [9] Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235 [10] Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071 [11] Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935 [12] Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114 [13] Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 [14] José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078 [15] Goro Akagi, Kazumasa Suzuki. On a certain degenerate parabolic equation associated with the infinity-laplacian. Conference Publications, 2007, 2007 (Special) : 18-27. doi: 10.3934/proc.2007.2007.18 [16] Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial and Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072 [17] Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure and Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687 [18] Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 [19] Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2579-2605. doi: 10.3934/jimo.2020084 [20] Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107

2020 Impact Factor: 1.392