\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic expansion of the mean-field approximation

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the $ N $-body quantum evolution of a particle system in the mean-field approximation. We show that the $ j $th order marginals $ F^N_j(t) $, for factorized initial data $ F(0)^{\otimes N} $, are explicitly expressed, modulo $ N^{-\infty} $, out of the solution $ F(t) $ of the corresponding non-linear mean-field equation and the solution of its linearization around $ F(t) $. The result is valid for all times $ t $, uniformly in $ j = O(N^{\frac12-\alpha}) $ for any $ \alpha>0 $. We establish and estimate the full asymptotic expansion in integer powers of $ \frac1N $ of $ F^N_j(t) $, $ j = O(\sqrt N) $, whose computation at order $ n $ involves a finite number of operations depending on $ j $ and $ n $ but not on $ N $. Our results are also valid for more general models including Kac models. As a by-product we get that the rate of convergence to the mean-field limit in $ \frac1N $ is optimal in the sense that the first correction to the mean-field limit does not vanish.

    Mathematics Subject Classification: 35Q83, 35Q20, 35Q40, 34E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. BardosF. Golse and N. Mauser, Weak coupling limit of the N particles Schrödinger equation, Methods Appl. Anal., 7 (2000), 275-293.  doi: 10.4310/MAA.2000.v7.n2.a2.
    [2] H. van BeijerenO. E. LandfordJ. L. Lebowitz and H. Spohn, Equilibrium time correlation functions in the low-density limit, J. Stat. Phys., 22 (1980), 237-257.  doi: 10.1007/BF01008050.
    [3] N. Benedikter, M. Porta and B. Schlein, Effective Evolution Equations from Quantum Dynamics, SpringerBriefs in Mathematical Physics, 2016. doi: 10.1007/978-3-319-24898-1.
    [4] C. BoldrighiniA. De Masi and A. Pellegrinotti, Non equilibrium fluctuations in particle systems modelling Reaction-Diffusion equations, Stochastic Processes and Appl., 42 (1992), 1-30.  doi: 10.1016/0304-4149(92)90023-J.
    [5] W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Commun. Math. Phys., 56 (1977), 101-113.  doi: 10.1007/BF01611497.
    [6] S. Caprino and M. Pulvirenti, A cluster expansion approach to a one-dimensional Boltzmann equation: a validity result, Comm. Math. Phys., 166 (1995), 603-631.  doi: 10.1007/BF02099889.
    [7] S. CaprinoA. De MasiE. Presutti and M. Pulvirenti, A derivation of the Broadwell equation, Comm. Math. Phys., 135 (1991), 443-465.  doi: 10.1007/BF02104115.
    [8] S. CaprinoM. Pulvirenti and W. Wagner, A particle systems approximating stationary solutions to the Boltzmann equation, SIAM J. Math. Anal., 29 (1998), 913-934.  doi: 10.1137/S0036141096309988.
    [9] C. Cercignani, The Grad limit for a system of soft spheres, Comm. Pure Appl. Math., 36 (1983), 479-494.  doi: 10.1002/cpa.3160360406.
    [10] A. De Masi and E. Presutti, Mathematical Methods for Hydrodynamical Limits, Lecture Notes in Mathematics 1501, Springer-Verlag, 1991. doi: 10.1007/BFb0086457.
    [11] A. De MasiE. OrlandiE. Presutti and L. Triolo, Glauber evolution with Kac potentials. Ⅰ.Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity, 7 (1994), 633-696.  doi: 10.1088/0951-7715/7/3/001.
    [12] A. De MasiE. OrlandiE. Presutti and L. Triolo, Glauber evolution with Kac potentials. Ⅱ. Fluctuations, Nonlinearity, 9 (1996), 27-51.  doi: 10.1088/0951-7715/9/1/002.
    [13] A. De MasiE. PresuttiD. Tsagkarogiannis and M. E. Vares, Truncated correlations in the stirring process with births and deaths, Electronic Journal of Probability, 17 (2012), 1-35.  doi: 10.1214/EJP.v17-1734.
    [14] F. Golse and T. Paul, The Schrödinger equation in the mean-field and semiclassical regime, Arch. Rational Mech. Anal., 223 (2017), 57-94.  doi: 10.1007/s00205-016-1031-x.
    [15] C. Graham and S. Méléard, Stochastic particle approximations for generalized Boltzmann models and convergence estimates, Annals of Probability, 25 (1997), 115-132.  doi: 10.1214/aop/1024404281.
    [16] K. Hepp and E. H. Lieb, Phase transitions in reservoir-driven open systems with applications to lasers and superconductors, Helv. Phys, Acta, 46 (1973), 573.
    [17] M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles, 3 (1956), 171-197.
    [18] M. Kac, Probability and Related Topics in Physical Sciences, Interscience, London-New York, 1959.
    [19] A. Knowles and P. Pickl, Mean-field dynamics: Singular potentials and rate of convergence, Com. Math.Physics, 298 (2010), 101-138.  doi: 10.1007/s00220-010-1010-2.
    [20] M Lachowicz and M Pulvirenti, A stochastic system of particles modelling the Euler equation, Arch. Ration. Mech. Anal., 109 (1990), 81-93.  doi: 10.1007/BF00377981.
    [21] S. Lang, Algebra, Springer, 2002.
    [22] M. LewinP. T. NamS. Serfaty and J. P. Solovej, Bogoliubov spectrum of interacting Bose gases, Commun. Pur. Appl. Math., 68 (2015), 413-471.  doi: 10.1002/cpa.21519.
    [23] M. LewinP. T. Nam and B. Schlein, Fluctuations around Hartree states in the mean-field regime, Am. J. Math., 137 (2015), 1613-1650.  doi: 10.1353/ajm.2015.0040.
    [24] S. Mischler and C. Mouhot, Kac's program in kinetic theory, Inventiones Mathematicae, 193 (2013), 1-147.  doi: 10.1007/s00222-012-0422-3.
    [25] D. Mitrouskas, S. Petrat and P. Pickl, Bogoliubov corrections and trace norm convergence for the Hartree dynamics, preprint.
    [26] T. Paul, M. Pulvirenti and S. Simonella, On the size of kinetic chaos for mean field models, to appear in ARMA.
    [27] M. Pulvirenti and S. Simonella, The Boltzmann Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones Mathematicae, 207 (2017), 1135-1237.  doi: 10.1007/s00222-016-0682-4.
    [28] B. Schlein, Derivation of effective evolution equations from microscopic quantum dynamics, Evolution Equations, 511–572, Clay Math. Proc., 17, Amer. Math. Soc., Providence, RI, 2013.
    [29] H. Spohn, Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys., 52 (1980), 569-615.  doi: 10.1103/RevModPhys.52.569.
    [30] H. Spohn, Fuctuations around the Boltzmann equation, J. Stat.l Physics, 26 (1981), 285-305.  doi: 10.1007/BF01013172.
  • 加载中
SHARE

Article Metrics

HTML views(279) PDF downloads(260) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return