
-
Previous Article
Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces
- DCDS Home
- This Issue
-
Next Article
Effect of quantified irreducibility on the computability of subshift entropy
Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation
School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan |
In this paper, the propagation phenomena in the Allen-Cahn-Nagumo equation are considered. Especially, the relation between traveling wave solutions and entire solutions is discussed. Indeed, several types of one-dimensional entire solutions are constructed by composing one-dimensional traveling wave solutions. Combining planar traveling wave solutions provides several types of multi-dimensional traveling wave solutions. The relation between multi-dimensional traveling wave solutions and entire solutions suggests the existence of new traveling wave solutions and new entire solutions.
References:
[1] |
H. Berestycki and F. Hamel,
Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648.
doi: 10.1002/cpa.21389. |
[2] |
X. F. Chen and J.-S. Guo,
Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84.
doi: 10.1016/j.jde.2004.10.028. |
[3] |
X. F. Chen, J. S. Guo, F. Hamel, H. Ninomiya and J. M. Roquejoffre,
Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Annales de l'Institut Henri Poincaré C: Non Linear Analysis, 24 (2007), 369-393.
doi: 10.1016/j.anihpc.2006.03.012. |
[4] |
Y. Y. Chen, J. S. Guo, H. Ninomiya and C. H. Yao, Entire solutions originating from monotone fronts to the Allen-Cahn equation, Physica D, 378/379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[5] |
M. del Pino, M. Kowalczyk and J. Wei,
Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547.
doi: 10.1002/cpa.21438. |
[6] |
R. A. Fisher,
The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[7] |
Y. Fukao, Y. Morita and H. Ninomiya,
Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004), 15-32.
doi: 10.11650/twjm/1500558454. |
[8] |
J. S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. System, 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[9] |
K. P. Hadeler and F. Rothe,
Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251-263.
doi: 10.1007/BF00277154. |
[10] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Systems, 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069. |
[11] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Disc. Cont. Dyn. Systems, 14 (2006), 75-92.
doi: 10.3934/dcds.2006.14.75. |
[12] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. |
[13] |
F. Hamel and N. Nadirashvili,
Travelling fronts and entire solutions of the Fisher-KPP equation in ${\mathbb R}^N$, Arch. Ration. Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238. |
[14] |
Y. I. Kanel,
Some problems involving burning-theory equations, Soviet Math. Dokl., 2 (1961), 48-51.
|
[15] |
A. Kolmogorov, I. Petrovsky and N. Piskunov,
Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bjul. Moskowskogo Gos. Univ. Ser. Internat. Sec. A, 1 (1937), 1-26.
|
[16] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[17] |
Y. Morita and H. Ninomiya,
Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bull. Inst. Math. Acad. Sin.(NS), 3 (2008), 567-584.
|
[18] |
H. Ninomiya, Multi-dimensional entire solutions of the Allen-Cahn-Nagumo equation, in preparation. |
[19] |
H. Ninomiya and M. Taniguchi,
Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011. |
[20] |
H. Ninomiya and M. Taniguchi,
Global stability of traveling curved fronts in the Allen-Cahn equations, Disc. Cont. Dyn. Systems, 15 (2006), 819-832.
doi: 10.3934/dcds.2006.15.819. |
[21] |
P. Poláčik,
Symmetry properties of positive solutions of parabolic equations on $ \mathbb{R} ^N$: Ⅱ. entire solutions, Communications in Partial Differential Equations, 31 (2006), 1615-1638.
doi: 10.1080/03605300600635020. |
[22] |
D. H. Sattinger,
On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.
doi: 10.1016/0001-8708(76)90098-0. |
[23] |
M. Taniguchi,
Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788. |
[24] |
M. Taniguchi,
The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037. |
[25] |
M. Taniguchi,
Multi-dimensional traveling fronts in bistable reaction-diffusion, Discrete Contin. Dyn. System, 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011. |
[26] |
M. Taniguchi,
An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476.
doi: 10.1137/130945041. |
[27] |
X. Wang,
On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.1090/S0002-9947-1993-1153016-5. |
[28] |
H. Yagisita,
Nearly spherically symmetric expanding fronts in a bistable reaction-diffusion equation, J. Dynam. Differential Equations, 13 (2001), 323-353.
doi: 10.1023/A:1016632124792. |
[29] |
H. Yagisita,
Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.
doi: 10.2977/prims/1145476150. |
show all references
References:
[1] |
H. Berestycki and F. Hamel,
Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648.
doi: 10.1002/cpa.21389. |
[2] |
X. F. Chen and J.-S. Guo,
Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84.
doi: 10.1016/j.jde.2004.10.028. |
[3] |
X. F. Chen, J. S. Guo, F. Hamel, H. Ninomiya and J. M. Roquejoffre,
Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Annales de l'Institut Henri Poincaré C: Non Linear Analysis, 24 (2007), 369-393.
doi: 10.1016/j.anihpc.2006.03.012. |
[4] |
Y. Y. Chen, J. S. Guo, H. Ninomiya and C. H. Yao, Entire solutions originating from monotone fronts to the Allen-Cahn equation, Physica D, 378/379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[5] |
M. del Pino, M. Kowalczyk and J. Wei,
Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547.
doi: 10.1002/cpa.21438. |
[6] |
R. A. Fisher,
The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[7] |
Y. Fukao, Y. Morita and H. Ninomiya,
Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004), 15-32.
doi: 10.11650/twjm/1500558454. |
[8] |
J. S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. System, 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[9] |
K. P. Hadeler and F. Rothe,
Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251-263.
doi: 10.1007/BF00277154. |
[10] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Systems, 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069. |
[11] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Disc. Cont. Dyn. Systems, 14 (2006), 75-92.
doi: 10.3934/dcds.2006.14.75. |
[12] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. |
[13] |
F. Hamel and N. Nadirashvili,
Travelling fronts and entire solutions of the Fisher-KPP equation in ${\mathbb R}^N$, Arch. Ration. Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238. |
[14] |
Y. I. Kanel,
Some problems involving burning-theory equations, Soviet Math. Dokl., 2 (1961), 48-51.
|
[15] |
A. Kolmogorov, I. Petrovsky and N. Piskunov,
Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bjul. Moskowskogo Gos. Univ. Ser. Internat. Sec. A, 1 (1937), 1-26.
|
[16] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[17] |
Y. Morita and H. Ninomiya,
Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bull. Inst. Math. Acad. Sin.(NS), 3 (2008), 567-584.
|
[18] |
H. Ninomiya, Multi-dimensional entire solutions of the Allen-Cahn-Nagumo equation, in preparation. |
[19] |
H. Ninomiya and M. Taniguchi,
Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011. |
[20] |
H. Ninomiya and M. Taniguchi,
Global stability of traveling curved fronts in the Allen-Cahn equations, Disc. Cont. Dyn. Systems, 15 (2006), 819-832.
doi: 10.3934/dcds.2006.15.819. |
[21] |
P. Poláčik,
Symmetry properties of positive solutions of parabolic equations on $ \mathbb{R} ^N$: Ⅱ. entire solutions, Communications in Partial Differential Equations, 31 (2006), 1615-1638.
doi: 10.1080/03605300600635020. |
[22] |
D. H. Sattinger,
On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.
doi: 10.1016/0001-8708(76)90098-0. |
[23] |
M. Taniguchi,
Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788. |
[24] |
M. Taniguchi,
The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037. |
[25] |
M. Taniguchi,
Multi-dimensional traveling fronts in bistable reaction-diffusion, Discrete Contin. Dyn. System, 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011. |
[26] |
M. Taniguchi,
An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476.
doi: 10.1137/130945041. |
[27] |
X. Wang,
On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.1090/S0002-9947-1993-1153016-5. |
[28] |
H. Yagisita,
Nearly spherically symmetric expanding fronts in a bistable reaction-diffusion equation, J. Dynam. Differential Equations, 13 (2001), 323-353.
doi: 10.1023/A:1016632124792. |
[29] |
H. Yagisita,
Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.
doi: 10.2977/prims/1145476150. |




[1] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[2] |
Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[5] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[6] |
Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526 |
[7] |
Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011 |
[8] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[9] |
Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368 |
[10] |
Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79 |
[11] |
Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267 |
[12] |
Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275 |
[13] |
Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709 |
[14] |
Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure and Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319 |
[15] |
Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157 |
[16] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[17] |
Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 |
[18] |
Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic and Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048 |
[19] |
Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115 |
[20] |
Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]