April  2019, 39(4): 2059-2075. doi: 10.3934/dcds.2019086

Q-entropy for general topological dynamical systems

1. 

School of Mathematical Sciences, Soochow University, Suzhou 215006, Jiangsu, China

2. 

Center for Dynamical Systems and Differential Equation, Soochow University, Suzhou 215006, Jiangsu, China

3. 

Department of Applied Mathematics, Chinese Culture University, Yangmingshan, Taipei, 11114, Taiwan

* Corresponding author: Chih-Chang Ho

Received  April 2018 Revised  September 2018 Published  January 2019

The aim of this paper is to extend the $ q $-entropy from symbolic systems to a general topological dynamical system. Using a (weak) Gibbs measure as the reference measure, this paper defines $ q $-topological entropy and $ q $-metric entropy, then studies basic properties of these entropies. In particular, this paper describes the relations between $ q $-topological entropy and topological pressure for almost additive potentials, and the relations between $ q $-metric entropy and local metric entropy. Although these relations are quite similar to that described in [19], the methods used here need more techniques from the theory of thermodynamic formalism with almost additive potentials.

Citation: Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086
References:
[1]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Dynam. Sys., 16 (1996), 871-927.  doi: 10.1017/S0143385700010117.

[2]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Disc. Contin. Dyn. Syst., 16 (2006), 279-305.  doi: 10.3934/dcds.2006.16.279.

[3]

L. Barreira and P. Doutor, Almost additive multifractal analysis, J. Math. Pures Appl., 92 (2009), 1-17.  doi: 10.1016/j.matpur.2009.04.006.

[4]

L. Barreira, Almost additive thermodynamic formalism: Some recent developments, Rev. Math. Phys., 22 (2010), 1147-1179.  doi: 10.1142/S0129055X10004168.

[5]

R. Bowen, Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.

[6]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics (Rio de Janeiro) (Lecture Notes in Mathematics), Spring-Verlag, Berlin-New York, 1007 (1983), 30-38. doi: 10.1007/BFb0061408.

[7]

Y. CaoD. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008), 639-657.  doi: 10.3934/dcds.2008.20.639.

[8]

Y. CaoH. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic measure, Dynam. Sys., 33 (2013), 831-850.  doi: 10.1017/S0143385712000090.

[9]

V. Climenhaga, Bowen's equation in the non-uniform setting, Dynam. Sys., 31 (2011), 1163-1182.  doi: 10.1017/S0143385710000362.

[10]

V. Maume-DeschampsB. SchmittM. Urbański and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.  doi: 10.4064/fm178-2-3.

[11]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43.  doi: 10.1007/s00220-010-1031-x.

[12]

A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Contin. Dyn. Syst., 16 (2006), 435-454.  doi: 10.3934/dcds.2006.16.435.

[13]

Y. Pesin and B. Pitskel, Topological pressure and the variational principle for noncompact sets, Funct. Anal. Appl., 18 (1984), 307-318. 

[14]

Y. Pesin, Dimension Theory in Dynamical Systems, in Contemporary Views and Applications, University of Chicago Press, Chicago, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[15]

Y. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions, Random and Computational Dynamics, 3 (1995), 137-156. 

[16]

P. Varandas, Correlation decay and recurrence asymptotics for some robust nonuniformly hyperbolic maps, J. Stat. Phys., 133 (2008), 813-839.  doi: 10.1007/s10955-008-9639-3.

[17]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

[18]

M. Yuri, Weak Gibbs measures for certain non-hyperbolic systems, Dynam. Syst., 20 (2000), 1495-1518.  doi: 10.1017/S014338570000081X.

[19]

Y. Zhao and Y. Pesin, Q-entropy for symbolic dynamical systems, J. Phys. A: Math. Theor., 48 (2015), 494002, 17 pp. doi: 10.1088/1751-8113/48/49/494002.

[20]

Y. ZhaoL. Zhang and Y. Cao, The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials, Nonlinear Analysis, 74 (2011), 5015-5022.  doi: 10.1016/j.na.2011.04.065.

show all references

References:
[1]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Dynam. Sys., 16 (1996), 871-927.  doi: 10.1017/S0143385700010117.

[2]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Disc. Contin. Dyn. Syst., 16 (2006), 279-305.  doi: 10.3934/dcds.2006.16.279.

[3]

L. Barreira and P. Doutor, Almost additive multifractal analysis, J. Math. Pures Appl., 92 (2009), 1-17.  doi: 10.1016/j.matpur.2009.04.006.

[4]

L. Barreira, Almost additive thermodynamic formalism: Some recent developments, Rev. Math. Phys., 22 (2010), 1147-1179.  doi: 10.1142/S0129055X10004168.

[5]

R. Bowen, Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.

[6]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics (Rio de Janeiro) (Lecture Notes in Mathematics), Spring-Verlag, Berlin-New York, 1007 (1983), 30-38. doi: 10.1007/BFb0061408.

[7]

Y. CaoD. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008), 639-657.  doi: 10.3934/dcds.2008.20.639.

[8]

Y. CaoH. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic measure, Dynam. Sys., 33 (2013), 831-850.  doi: 10.1017/S0143385712000090.

[9]

V. Climenhaga, Bowen's equation in the non-uniform setting, Dynam. Sys., 31 (2011), 1163-1182.  doi: 10.1017/S0143385710000362.

[10]

V. Maume-DeschampsB. SchmittM. Urbański and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.  doi: 10.4064/fm178-2-3.

[11]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43.  doi: 10.1007/s00220-010-1031-x.

[12]

A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Contin. Dyn. Syst., 16 (2006), 435-454.  doi: 10.3934/dcds.2006.16.435.

[13]

Y. Pesin and B. Pitskel, Topological pressure and the variational principle for noncompact sets, Funct. Anal. Appl., 18 (1984), 307-318. 

[14]

Y. Pesin, Dimension Theory in Dynamical Systems, in Contemporary Views and Applications, University of Chicago Press, Chicago, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[15]

Y. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions, Random and Computational Dynamics, 3 (1995), 137-156. 

[16]

P. Varandas, Correlation decay and recurrence asymptotics for some robust nonuniformly hyperbolic maps, J. Stat. Phys., 133 (2008), 813-839.  doi: 10.1007/s10955-008-9639-3.

[17]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

[18]

M. Yuri, Weak Gibbs measures for certain non-hyperbolic systems, Dynam. Syst., 20 (2000), 1495-1518.  doi: 10.1017/S014338570000081X.

[19]

Y. Zhao and Y. Pesin, Q-entropy for symbolic dynamical systems, J. Phys. A: Math. Theor., 48 (2015), 494002, 17 pp. doi: 10.1088/1751-8113/48/49/494002.

[20]

Y. ZhaoL. Zhang and Y. Cao, The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials, Nonlinear Analysis, 74 (2011), 5015-5022.  doi: 10.1016/j.na.2011.04.065.

[1]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545

[2]

Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159

[3]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[4]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[5]

Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[6]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[7]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[8]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[9]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[10]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[11]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[12]

Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131

[13]

Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for non-ergodic measures. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2767-2789. doi: 10.3934/dcds.2020149

[14]

Xiaojun Huang, Zhiqiang Li, Yunhua Zhou. A variational principle of topological pressure on subsets for amenable group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2687-2703. doi: 10.3934/dcds.2020146

[15]

Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1

[16]

Yuntao Zang. An upper bound of the measure-theoretical entropy. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022052

[17]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[18]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[19]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[20]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (309)
  • HTML views (121)
  • Cited by (1)

Other articles
by authors

[Back to Top]