Projected differential equations are known as fundamental mathematical models in economics, for electric circuits, etc. The present paper studies the (higher order) derivability as well as a generalized type of derivability of solutions of such equations when the set involved for projections is prox-regular with smooth boundary.
Citation: |
[1] |
V. Acary, O. Bonnefon and B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, Springer, 2011.
doi: 10.1007/978-90-481-9681-4.![]() ![]() ![]() |
[2] |
S. Adly and L. Bourdin, Sensitivity analysis of variational inequalities via twice epi-differentiability and proto-differentiability of the proximity operator, SIAM J. Optim., 28 (2018), 1699-1725.
doi: 10.1137/17M1135013.![]() ![]() ![]() |
[3] |
C. Arroud and G. Colombo, A maximum principle for the controlled sweeping process, Set-Valued Var. Anal., 26 (2018), 607-629.
doi: 10.1007/s11228-017-0400-4.![]() ![]() ![]() |
[4] |
J.-P. Aubin, Viability Theory, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1991.
![]() ![]() |
[5] |
J.-P. Bressoud and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() ![]() |
[6] |
D. Bressoud, A Radical Approach to Lebesgue's Theory of Integration, Cambridge University Press, Cambridge, 2008.
![]() ![]() |
[7] |
B. Brogliato and L. Thibault, Existence and uniqueness of solutions for non-autonomous complementary dynamical systems, J. Convex Anal., 17 (2010), 961-990.
![]() ![]() |
[8] |
M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality, Discrete Continuous Dynam. Systems - B, 18 (2013), 331-348.
doi: 10.3934/dcdsb.2013.18.331.![]() ![]() ![]() |
[9] |
T. H. Cao and B. Mordukhovich, Optimal control of a perturbed sweeping process via discrete approximations, Discrete Continuous Dynam. Systems - B, 21 (2016), 3331-3358.
doi: 10.3934/dcdsb.2016100.![]() ![]() ![]() |
[10] |
T. H. Cao and B. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Continuous Dynam. Systems - B, 22 (2017), 267-306.
doi: 10.3934/dcdsb.2017014.![]() ![]() ![]() |
[11] |
T. H. Cao and B. Mordukhovich, Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, in Press (2018).
![]() |
[12] |
C. Christof and G. Wachsmuth, Differential sensitivity analysis of variational inequalities with locally Lipschitz continuous solution operators, preprint, arXiv: 1711.02720
![]() |
[13] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.
![]() ![]() |
[14] |
M.-G. Cojocaru and L.-B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.
doi: 10.1090/S0002-9939-03-07015-1.![]() ![]() ![]() |
[15] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich, Optimal control of the sweeping process, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 117-159.
![]() ![]() |
[16] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich, Discrete approximations of a controlled sweeping process, Set-Valued Var. Anal., 23 (2015), 69-86.
doi: 10.1007/s11228-014-0299-y.![]() ![]() ![]() |
[17] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets, J. Differential Equations, 260 (2016), 3397-3447.
doi: 10.1016/j.jde.2015.10.039.![]() ![]() ![]() |
[18] |
G. Colombo and L. Thibault, Prox-regular sets and applications, in Handbook of Nonconvex Analysis and Applications (eds. D. Gao and D. Motreanu), International Press, Somerville, Mass, (2010), 99-182.
![]() ![]() |
[19] |
B. Cornet, Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.
doi: 10.1016/0022-247X(83)90032-X.![]() ![]() ![]() |
[20] |
R. Correa, D. Salas and L. Thibault, Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces, J. Math. Anal. Appl., 457 (2018), 1307-1322.
doi: 10.1016/j.jmaa.2016.08.064.![]() ![]() ![]() |
[21] |
J.-F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program. Ser. B, 104 (2005), 347-373.
doi: 10.1007/s10107-005-0619-y.![]() ![]() ![]() |
[22] |
G. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, N.J, 1995.
![]() ![]() |
[23] |
C. Henry, An existence theorem for a class of differential equations with multivalued right-hand side, J. Math. Anal. Appl., 41 (1973), 179-186.
doi: 10.1016/0022-247X(73)90192-3.![]() ![]() ![]() |
[24] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Volume 8 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho Co., Ltd., Tokyo, 1996.
![]() ![]() |
[25] |
J. Lee, Introduction to Smooth Manifolds, Springer, New York London, 2013.
![]() ![]() |
[26] |
B. Maury and J. Venel, Un modéle de mouvements de foule, ESAIM Proc., 18 (2007), 143-152.
doi: 10.1051/proc:071812.![]() ![]() ![]() |
[27] |
B. Mordukhovich, Variational analysis and optimization of sweeping processes with controlled moving sets, Invest. Oper., 39 (2018), 283-302.
![]() ![]() |
[28] |
B. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Application, Springer, Berlin New York, 2006.
![]() |
[29] |
J.-J. Moreau, Rafle par un convexe variable Ⅰ, expo. 15, Sém, Anal. Conv. Mont., (1971), 1-43.
![]() ![]() |
[30] |
J. Nash, Real Algebraic Manifolds, Ann. of Math., 56 (1952), 405-421.
doi: 10.2307/1969649.![]() ![]() ![]() |
[31] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2.![]() ![]() ![]() |
[32] |
D. Salas and L. Thibault, Characterizations of nonconvex sets with smooth boundary in terms of the metric projection in Hilbert spaces, preprint.
![]() |
[33] |
L. Thibault, Sweeping process with regular and nonregular sets, J. Differential Equations, 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3.![]() ![]() ![]() |
[34] |
A. Tolstonogov, Control sweeping processes, J. Convex Anal., 23 (2016), 1099-1123.
![]() ![]() |
[35] |
H. Toruńczyk, Smooth partitions of unity on some non-separable Banach spaces, Studia Math., 46 (1973), 43-51.
doi: 10.4064/sm-46-1-43-51.![]() ![]() ![]() |
Two prox-regular sets with smooth and non-smooth boundary
Sets of Definition 4.1 for a trajectory in
A circuit with an ideal diode, an inductor and a current source
Functions
Trajectory for