# American Institute of Mathematical Sciences

May  2019, 39(5): 2807-2875. doi: 10.3934/dcds.2019118

## Existence and stability of one-peak symmetric stationary solutions for the Schnakenberg model with heterogeneity

 Department of Mathematical Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

* Corresponding author: Yuta Ishii

Received  June 2018 Revised  September 2018 Published  January 2019

Fund Project: The second author is supported by JSPS KAKENHI Grant Number 16K05240.

In this paper, we consider stationary solutions of the following one-dimensional Schnakenberg model with heterogeneity:
 $\begin{equation*} \begin{cases} u_t-\varepsilon ^2 u_{xx} = d\varepsilon -u+g(x)u^2 v , & x \in (-1,1) ,\; t>0, \\ \varepsilon v_t-Dv_{xx} = \frac{1}{2}-\frac{c}{\varepsilon}g(x)u^2 v , & x \in (-1,1) ,\; t>0, \\ u_x (\pm 1) = v_x (\pm 1) = 0 . \end{cases} \end{equation*}$
We concentrate on the case that
 $d, c, D>0$
are given constants,
 $g(x)$
is a given symmetric function, namely
 $g(x) = g(-x)$
, and
 $\varepsilon>0$
is sufficiently small and are interested in the effect of the heterogeneity
 $g(x)$
on the stability. For the case
 $g(x) = 1$
and
 $d = 0$
, Iron, Wei, and Winter (2004) studied the existence of
 $N-$
peaks symmetric stationary solutions and their stability. In this paper, first we construct symmetric one-peak stationary solutions
 $(u_{\varepsilon}, v_{\varepsilon})$
by using the contraction mapping principle. Furthermore, we give a linear stability analysis of the solutions
 $(u_{\varepsilon}, v_{\varepsilon})$
in details and reveal the effect of heterogeneity on the stability, which is a new phenomenon compared with the case
 $g(x) = 1$
.
Citation: Yuta Ishii, Kazuhiro Kurata. Existence and stability of one-peak symmetric stationary solutions for the Schnakenberg model with heterogeneity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2807-2875. doi: 10.3934/dcds.2019118
##### References:
 [1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Orderer Elliptic Equations, Princeton Univ. Press, 1982. [2] D. L. Benson, J. A. Sherrat and P. K. Maini, Diffusion driven instability in an inhomogeneous domain, Bull. of Math. Biology, 55 (1993), 365-384. [3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. [4] K. Ikeda, The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system, Netw. Heterog. Media, 8 (2013), 291-325.  doi: 10.3934/nhm.2013.8.291. [5] D. Iron, J. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.  doi: 10.1007/s00285-003-0258-y. [6] T. Kolokolnikov and J. Wei, Pattern formation in a reaction-diffusion system with space-dependent feed rate, SIAM Rev., 60 (2018), 626-645.  doi: 10.1137/17M1116027. [7] E. H. Lieb and M. Loss, Analysis, Vol.14 of Graduate Studies in Mathematics, American Math. Society, 2001. doi: 10.1090/gsm/014. [8] P. Liu, J. Shi, Y. Wang and X. Feng, Bifurcation analysis of reaction-diffusion Scnakenberg model, J. Math. Chem., 51 (2013), 2001-2019.  doi: 10.1007/s10910-013-0196-x. [9] K. Morimoto, Point-condensation phenomena and saturation effect for the one-dimensional Gierer-Meinhardt system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 973-995.  doi: 10.1016/j.anihpc.2010.01.003. [10] J. Schnakenberg, Simple chemical reaction system with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.  doi: 10.1016/0022-5193(79)90042-0. [11] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc., B237 (1952), 37-72. [12] M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model, Stud. Appl. Math., 109 (2002), 229-264.  doi: 10.1111/1467-9590.00223. [13] J. Wei, On single interior spike layer solutions of Gierer-Meinhardt system: uniqueness and spectrum estimates, Eur. J. Appl. Math., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770. [14] J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion system, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y. [15] J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Vol. 189 of Applied Mathematical Sciences, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3. [16] J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, Eur. J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.

show all references

##### References:
 [1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Orderer Elliptic Equations, Princeton Univ. Press, 1982. [2] D. L. Benson, J. A. Sherrat and P. K. Maini, Diffusion driven instability in an inhomogeneous domain, Bull. of Math. Biology, 55 (1993), 365-384. [3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. [4] K. Ikeda, The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system, Netw. Heterog. Media, 8 (2013), 291-325.  doi: 10.3934/nhm.2013.8.291. [5] D. Iron, J. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.  doi: 10.1007/s00285-003-0258-y. [6] T. Kolokolnikov and J. Wei, Pattern formation in a reaction-diffusion system with space-dependent feed rate, SIAM Rev., 60 (2018), 626-645.  doi: 10.1137/17M1116027. [7] E. H. Lieb and M. Loss, Analysis, Vol.14 of Graduate Studies in Mathematics, American Math. Society, 2001. doi: 10.1090/gsm/014. [8] P. Liu, J. Shi, Y. Wang and X. Feng, Bifurcation analysis of reaction-diffusion Scnakenberg model, J. Math. Chem., 51 (2013), 2001-2019.  doi: 10.1007/s10910-013-0196-x. [9] K. Morimoto, Point-condensation phenomena and saturation effect for the one-dimensional Gierer-Meinhardt system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 973-995.  doi: 10.1016/j.anihpc.2010.01.003. [10] J. Schnakenberg, Simple chemical reaction system with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.  doi: 10.1016/0022-5193(79)90042-0. [11] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc., B237 (1952), 37-72. [12] M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model, Stud. Appl. Math., 109 (2002), 229-264.  doi: 10.1111/1467-9590.00223. [13] J. Wei, On single interior spike layer solutions of Gierer-Meinhardt system: uniqueness and spectrum estimates, Eur. J. Appl. Math., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770. [14] J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion system, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y. [15] J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Vol. 189 of Applied Mathematical Sciences, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3. [16] J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, Eur. J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.
For $D = 0.6$, the solution is stable
For $D_1 > D = \frac{1}{24}-0.02$, the solution is stable. For $D_1 < D = \frac{1}{24}+0.02$, the solution is unstable
 [1] Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056 [2] Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 [3] Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555 [4] Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217 [5] Evan C. Haskell, Jonathan Bell. Pattern formation in a predator-mediated coexistence model with prey-taxis. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2895-2921. doi: 10.3934/dcdsb.2020045 [6] R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339 [7] Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 [8] Hongfei Xu, Jinfeng Wang, Xuelian Xu. Dynamics and pattern formation in a cross-diffusion model with stage structure for predators. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4473-4489. doi: 10.3934/dcdsb.2021237 [9] Weiwei Ao, Chao Liu. The Schnakenberg model with precursors. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1923-1955. doi: 10.3934/dcds.2019081 [10] Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783 [11] Yuta Ishii. Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 2965-3031. doi: 10.3934/cpaa.2020130 [12] Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure and Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021 [13] Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035 [14] Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022063 [15] Kai Wang, Hongyong Zhao, Hao Wang. Geometric singular perturbation of a nonlocal partially degenerate model for Aedes aegypti. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022122 [16] Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021 [17] Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395 [18] Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 [19] Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809 [20] Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

2021 Impact Factor: 1.588

## Metrics

• PDF downloads (216)
• HTML views (190)
• Cited by (4)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]