
-
Previous Article
Generalized linear models for population dynamics in two juxtaposed habitats
- DCDS Home
- This Issue
-
Next Article
A BDF2-approach for the non-linear Fokker-Planck equation
A new proof of continuity of Lyapunov exponents for a class of $ C^2 $ quasiperiodic Schrödinger cocycles without LDT
Department of Mathematics, Nanjing University, Nanjing 210093, China |
In this paper, we reconsider the continuity of the Lyapunov exponents for a class of Schrödinger cocycles with a $ C^2 $ cos-type potential and a Diophantine frequency. We propose a new method to prove the Lyapunov exponent is continuous in energies. In particular, a large deviation theorem is not needed in the proof.
References:
[1] |
A. Avila,
Density of positive Lyapunov exponents for SL(2, $\mathbb{R}$)-cocycles, J. Amer. Math. Soc., 24 (2011), 999-1014.
doi: 10.1090/S0894-0347-2011-00702-9. |
[2] |
A. Avila, D. Damanik and Z. Zhang,
Singular density of states measure for subshift and quasi-periodic Schrödinger operators, Comm. Math. Phys., 330 (2014), 469-498.
doi: 10.1007/s00220-014-1968-2. |
[3] |
A. Avila and S. Jitomirskaya,
The ten Martini problem, Ann. of Math, 170 (2009), 303-342.
doi: 10.4007/annals.2009.170.303. |
[4] |
K. Bjerklöv,
The dynamics of a class of quasi-periodic Schrödinger cocycles, Annales Henri Poincaré, 16 (2015), 961-1031.
doi: 10.1007/s00023-014-0330-8. |
[5] |
J. Bochi, Discontinuity of the Lyapunov exponent for non-hyperbolic cocycles, 1999, unpublished. |
[6] |
J. Bochi,
Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 22 (2002), 1667-1696.
doi: 10.1017/S0143385702001165. |
[7] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. of Math, 152 (2000), 835-879.
doi: 10.2307/2661356. |
[8] |
J. Bourgain and S. Jitomirskaya,
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1203-1218.
doi: 10.1023/A:1019751801035. |
[9] |
J. Fröhlich, T. Spencer and P. Wittwer,
Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys., 132 (1990), 5-25.
doi: 10.1007/BF02277997. |
[10] |
A. Furman,
On the multiplicative ergodic theorem for the uniquely ergodic systems, Ann. Inst. Henri Poincaré, 33 (1997), 797-815.
doi: 10.1016/S0246-0203(97)80113-6. |
[11] |
M. Goldstein and W. Schlag,
Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math, 154 (2001), 155-203.
doi: 10.2307/3062114. |
[12] |
R. Johnson,
Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations, 61 (1986), 54-78.
doi: 10.1016/0022-0396(86)90125-7. |
[13] |
O. Knill, The upper Lyapunov exponent of $SL(2, \mathbb{R})$ cocycles: Discontinuity and the problem of positivity, in Lyapunov Exponents, Springer Berlin Heidelberg, 1486 (1991), 86–97. |
[14] |
J. Liang and P. J. Kung,
Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies, Frontiers of Mathematics in China, 12 (2017), 607-639.
doi: 10.1007/s11464-017-0619-2. |
[15] |
J. Liang, Y. Wang and J. You, Hölder continuity of Lyapunov exponent for a family of smooth Schrödinger cocyles, preprint, arXiv: 1806.03284. |
[16] |
R. Mañé, Oseledec's theorem from the generic viewpoint, in Proc. of Int. Congress of Math, (1984), 1269–1276. |
[17] |
R. Mañé, The Lyapunov exponents of engeric area preserving diffeomorphisms, in Pitman Res. Notes Math. Ser., 362 (1996), 110-119. |
[18] |
Ya. G. Sinai,
Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys., 46 (1987), 861-909.
doi: 10.1007/BF01011146. |
[19] |
J. Thouvenot,
An example of discontinuity in the computation of the Lyapunov exponents, Proc. Steklov Inst. Math, 216 (1997), 366-369.
|
[20] |
Y. Wang and J. You,
Examples of discontinuity of Lyapunov exponent in smooth quasi-periodic cocycles, Duke Math. J., 162 (2013), 2363-2412.
doi: 10.1215/00127094-2371528. |
[21] |
Y. Wang and Z. Zhang,
Uniform positivity and continuity of Lyapunov exponents for a class of C2 quasi-periodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.
doi: 10.1016/j.jfa.2015.01.003. |
[22] |
Y. Wang and Z. Zhang,
Cantor spectrum for a class of C2 quasiperiodic Schrödinger operators, Int. Math. Res. Not., 8 (2017), 2300-2336.
doi: 10.1093/imrn/rnw079. |
[23] |
L. Young,
Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.
doi: 10.1017/S0143385797079170. |
[24] |
Z. Zhang,
Positive Lyapunov exponents for quasiperiodic Szegő cocycles, Nonlinearity, 25 (2012), 1771-1797.
doi: 10.1088/0951-7715/25/6/1771. |
[25] |
Z. Zhang, Resolvent set of Schrödinger operators and uniform hyperbolicity, Mathematics, 2013. |
show all references
References:
[1] |
A. Avila,
Density of positive Lyapunov exponents for SL(2, $\mathbb{R}$)-cocycles, J. Amer. Math. Soc., 24 (2011), 999-1014.
doi: 10.1090/S0894-0347-2011-00702-9. |
[2] |
A. Avila, D. Damanik and Z. Zhang,
Singular density of states measure for subshift and quasi-periodic Schrödinger operators, Comm. Math. Phys., 330 (2014), 469-498.
doi: 10.1007/s00220-014-1968-2. |
[3] |
A. Avila and S. Jitomirskaya,
The ten Martini problem, Ann. of Math, 170 (2009), 303-342.
doi: 10.4007/annals.2009.170.303. |
[4] |
K. Bjerklöv,
The dynamics of a class of quasi-periodic Schrödinger cocycles, Annales Henri Poincaré, 16 (2015), 961-1031.
doi: 10.1007/s00023-014-0330-8. |
[5] |
J. Bochi, Discontinuity of the Lyapunov exponent for non-hyperbolic cocycles, 1999, unpublished. |
[6] |
J. Bochi,
Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 22 (2002), 1667-1696.
doi: 10.1017/S0143385702001165. |
[7] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. of Math, 152 (2000), 835-879.
doi: 10.2307/2661356. |
[8] |
J. Bourgain and S. Jitomirskaya,
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1203-1218.
doi: 10.1023/A:1019751801035. |
[9] |
J. Fröhlich, T. Spencer and P. Wittwer,
Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys., 132 (1990), 5-25.
doi: 10.1007/BF02277997. |
[10] |
A. Furman,
On the multiplicative ergodic theorem for the uniquely ergodic systems, Ann. Inst. Henri Poincaré, 33 (1997), 797-815.
doi: 10.1016/S0246-0203(97)80113-6. |
[11] |
M. Goldstein and W. Schlag,
Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math, 154 (2001), 155-203.
doi: 10.2307/3062114. |
[12] |
R. Johnson,
Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations, 61 (1986), 54-78.
doi: 10.1016/0022-0396(86)90125-7. |
[13] |
O. Knill, The upper Lyapunov exponent of $SL(2, \mathbb{R})$ cocycles: Discontinuity and the problem of positivity, in Lyapunov Exponents, Springer Berlin Heidelberg, 1486 (1991), 86–97. |
[14] |
J. Liang and P. J. Kung,
Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies, Frontiers of Mathematics in China, 12 (2017), 607-639.
doi: 10.1007/s11464-017-0619-2. |
[15] |
J. Liang, Y. Wang and J. You, Hölder continuity of Lyapunov exponent for a family of smooth Schrödinger cocyles, preprint, arXiv: 1806.03284. |
[16] |
R. Mañé, Oseledec's theorem from the generic viewpoint, in Proc. of Int. Congress of Math, (1984), 1269–1276. |
[17] |
R. Mañé, The Lyapunov exponents of engeric area preserving diffeomorphisms, in Pitman Res. Notes Math. Ser., 362 (1996), 110-119. |
[18] |
Ya. G. Sinai,
Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys., 46 (1987), 861-909.
doi: 10.1007/BF01011146. |
[19] |
J. Thouvenot,
An example of discontinuity in the computation of the Lyapunov exponents, Proc. Steklov Inst. Math, 216 (1997), 366-369.
|
[20] |
Y. Wang and J. You,
Examples of discontinuity of Lyapunov exponent in smooth quasi-periodic cocycles, Duke Math. J., 162 (2013), 2363-2412.
doi: 10.1215/00127094-2371528. |
[21] |
Y. Wang and Z. Zhang,
Uniform positivity and continuity of Lyapunov exponents for a class of C2 quasi-periodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.
doi: 10.1016/j.jfa.2015.01.003. |
[22] |
Y. Wang and Z. Zhang,
Cantor spectrum for a class of C2 quasiperiodic Schrödinger operators, Int. Math. Res. Not., 8 (2017), 2300-2336.
doi: 10.1093/imrn/rnw079. |
[23] |
L. Young,
Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.
doi: 10.1017/S0143385797079170. |
[24] |
Z. Zhang,
Positive Lyapunov exponents for quasiperiodic Szegő cocycles, Nonlinearity, 25 (2012), 1771-1797.
doi: 10.1088/0951-7715/25/6/1771. |
[25] |
Z. Zhang, Resolvent set of Schrödinger operators and uniform hyperbolicity, Mathematics, 2013. |


[1] |
Bassam Fayad, Zhiyuan Zhang. An effective version of Katok's horseshoe theorem for conservative C2 surface diffeomorphisms. Journal of Modern Dynamics, 2017, 11: 425-445. doi: 10.3934/jmd.2017017 |
[2] |
Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 |
[3] |
Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475 |
[4] |
P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029 |
[5] |
Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189 |
[6] |
P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253 |
[7] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[8] |
Fan Wu, Linlin Fu, Jiahao Xu. On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2525-2540. doi: 10.3934/dcds.2021201 |
[9] |
Ran Wang, Jianliang Zhai, Shiling Zhang. Large deviation principle for stochastic Burgers type equation with reflection. Communications on Pure and Applied Analysis, 2022, 21 (1) : 213-238. doi: 10.3934/cpaa.2021175 |
[10] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[11] |
Congcong Li, Chunqiu Li, Jintao Wang. Statistical solution and Liouville type theorem for coupled Schrödinger-Boussinesq equations on infinite lattices. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021311 |
[12] |
Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206 |
[13] |
François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229 |
[14] |
Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1 |
[15] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
[16] |
Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047 |
[17] |
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 |
[18] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[19] |
Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025 |
[20] |
Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]