\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized linear models for population dynamics in two juxtaposed habitats

  • * Corresponding author: Alexandre Thorel

    * Corresponding author: Alexandre Thorel

The last author is supported by CIFRE contract 2014/1307 with Qualiom Eco company

Abstract Full Text(HTML) Related Papers Cited by
  • In this work we introduce a generalized linear model regulating the spread of population displayed in a $ d $-dimensional spatial region $ \Omega $ of $ \mathbb{R}^{d} $ constituted by two juxtaposed habitats having a common interface $ \Gamma $. This model is described by an operator $ \mathcal{L} $ of fourth order combining the Laplace and Biharmonic operators under some natural boundary and transmission conditions. We then invert explicitly this operator in $ L^{p} $-spaces using the $ H^{\infty } $-calculus and the Dore-Venni sums theory. This main result will lead us in a later work to study the nature of the semigroup generated by $ \mathcal{L} $ which is important for the study of the complete nonlinear generalized diffusion equation associated to it.

    Mathematics Subject Classification: 35B65, 35C15, 35J40, 35R20, 47A60, 47D06, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, second Edition, Monographs in Mathematics, 96, Birkhauser, 2011. doi: 10.1007/978-3-0348-0087-7.
    [2] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 163-168.  doi: 10.1007/BF02384306.
    [3] D. L. Burkholder, A geometrical characterisation of Banach spaces in which martingale dif-ference sequences are unconditional, Ann. Probab., 9 (1981), 997-1011.  doi: 10.1214/aop/1176994270.
    [4] D. S. Cohen and J. D. Murray, A generalized diffusion model for growth and dispersal in po-pulation, Journal of Mathematical Biology, 12 (1981), 237-249.  doi: 10.1007/BF00276132.
    [5] G. Da Prato and P. Grisvard, Somme d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures et Appl., 54 (1975), 305-387. 
    [6] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.  doi: 10.1007/BF01163654.
    [7] A. FaviniR. LabbasS. MaingotK. Lemrabet and H. Sidibé, Resolution and Optimal Re-gularity for a Biharmonic Equation with Impedance Boundary Conditions and Some Gene-ralizations, Discrete and Continuous Dynamical Systems, 33 (2013), 4991-5014.  doi: 10.3934/dcds.2013.33.4991.
    [8] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
    [9] P. Grisvard, Équations différentielles abstraites, Extrait des Annales scientifiques de l'École Normale Supérieure, 2 (1969), 311-395.  doi: 10.24033/asens.1178.
    [10] P. Grisvard, Spazi di tracce e applicazioni, Rendiconti di Matematica, 5 (1972), 657-729. 
    [11] M. Haase, The Functional Calculus for Sectorial Operators, Birkhauser, 2006. doi: 10.1007/3-7643-7698-8.
    [12] H. Komatsu, Fractional powers of operators, Pacific Journal of Mathematics, 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.
    [13] R. LabbasS. MaingotD. Manceau and A. Thorel, On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain, Journal of Mathematical Analysis and Applications, 450 (2017), 351-376.  doi: 10.1016/j.jmaa.2017.01.026.
    [14] K. LimamR. LabbasK. LemrabetA. Medeghri and M. Meisner, On Some Transmission Problems Set in a Biological Cell, Analysis and Resolution, Journal of Differential Equations, 259 (2015), 2695-2731.  doi: 10.1016/j.jde.2015.04.002.
    [15] J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Publications Mathé-matiques de l'I.H.É.S., 19 (1964), 5-68. 
    [16] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Basel, Boston, Berlin, 1995.
    [17] S. G. Mikhlin, On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, 109 (1956), 701-703. 
    [18] F. L. Ochoa, A generalized reaction-diffusion model for spatial structures formed by motile cells, BioSystems, 17 (1984), 35-50.  doi: 10.1016/0303-2647(84)90014-5.
    [19] J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Mathe-matische Zeitschrift, 203 (1990), 429-452.  doi: 10.1007/BF02570748.
    [20] J. Prüss and H. Sohr, Imaginary powers of elliptic second order differential operators in Lp-spaces, Hiroshima Math. J., 23 (1993), 161-192.  doi: 10.32917/hmj/1206128381.
    [21] J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, J. Bastero, M. San Miguel (Eds.), Probability and Banach Spaces, Zaragoza, 1221 (1986), 195-222. doi: 10.1007/BFb0099115.
    [22] H. Triebel, Interpolation theory, function Spaces, differential Operators, North-Holland publishing company Amsterdam New York Oxford, 1978.
  • 加载中
SHARE

Article Metrics

HTML views(394) PDF downloads(349) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return