In this paper, we investigate Strichartz estimates for discrete linear Schrödinger and discrete linear Klein-Gordon equations on a lattice $ h\mathbb{Z}^d $ with $ h>0 $, where $ h $ is the distance between two adjacent lattice points. As for fixed $ h>0 $, Strichartz estimates for discrete Schrödinger and one-dimensional discrete Klein-Gordon equations are established by Stefanov-Kevrekidis [
Citation: |
[1] |
F. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi and M. Inguscio, Josephson junction arrays with bose-einstein condensates, Science, 293 (2001), 843-846.
doi: 10.1126/science.1062612.![]() ![]() |
[2] |
F. Cataliotti, L. Fallani, F. Ferlaino, C. Fort, P. Maddaloni and M. Inguscio, Superfluid current disruption in a chain of weakly coupled Bose–Einstein condensates, New Journal of Physics, 5 (2003), 71.
doi: 10.1088/1367-2630/5/1/371.![]() ![]() |
[3] |
S. Chatterjee, Invariant measures and the soliton resolution conjecture, Comm. Pure Appl. Math., 67 (2014), 1737-1842.
doi: 10.1002/cpa.21501.![]() ![]() ![]() |
[4] |
J. Duoandikoetxea, Fourier Analysis, vol. 29 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001, Translated and revised from the 1995 Spanish original by David Cruz-Uribe.
![]() ![]() |
[5] |
H. Eisenberg, R. Morandotti, Y. Silberberg, J. Arnold, G. Pennelli and J. Aitchison, Optical discrete solitons in waveguide arrays. i. soliton formation, JOSA B, 19 (2002), 2938-2944.
doi: 10.1364/JOSAB.19.002938.![]() ![]() |
[6] |
U. Haagerup, The best constants in the khintchine inequality, Studia Mathematica, 70 (1981), 231-283.
doi: 10.4064/sm-70-3-231-283.![]() ![]() ![]() |
[7] |
Y. Hong and C. Yang, Strong Convergence for Discrete Nonlinear Schrödinger equations in the Continuum Limit, arXiv: 1806.07542.
![]() |
[8] |
L. I. Ignat, Fully discrete schemes for the Schrödinger equation. Dispersive properties, Math. Models Methods Appl. Sci., 17 (2007), 567-591.
doi: 10.1142/S0218202507002029.![]() ![]() ![]() |
[9] |
L. I. Ignat and E. Zuazua, Dispersive properties of a viscous numerical scheme for the Schrödinger equation, C. R. Math. Acad. Sci. Paris, 340 (2005), 529-534.
doi: 10.1016/j.crma.2005.02.024.![]() ![]() ![]() |
[10] |
L. I. Ignat and E. Zuazua, A two-grid approximation scheme for nonlinear Schrödinger equations: dispersive properties and convergence, C. R. Math. Acad. Sci. Paris, 341 (2005), 381-386.
doi: 10.1016/j.crma.2005.07.018.![]() ![]() ![]() |
[11] |
L. I. Ignat and E. Zuazua, Convergence of a two-grid algorithm for the control of the wave equation, J. Eur. Math. Soc. (JEMS), 11 (2009), 351-391.
doi: 10.4171/JEMS/153.![]() ![]() ![]() |
[12] |
L. I. Ignat and E. Zuazua, Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 47 (2009), 1366-1390.
doi: 10.1137/070683787.![]() ![]() ![]() |
[13] |
L. I. Ignat and E. Zuazua, Convergence rates for dispersive approximation schemes to nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 98 (2012), 479-517.
doi: 10.1016/j.matpur.2012.01.001.![]() ![]() ![]() |
[14] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980, URL http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
[15] |
P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, vol. 232, Springer Science & Business Media, 2009.
doi: 10.1007/978-3-540-89199-4.![]() ![]() ![]() |
[16] |
P. Kevrekidis, K. Rasmussen and A. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, International Journal of Modern Physics B, 15 (2001), 2833-2900.
doi: 10.1142/S0217979201007105.![]() ![]() |
[17] |
K. Kirkpatrick, E. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.
doi: 10.1007/s00220-012-1621-x.![]() ![]() ![]() |
[18] |
S. Mingaleev, P. Christiansen, Y. Gaididei, M. Johansson and K. Rasmussen, Models for energy and charge transport and storage in biomolecules, Journal of Biological Physics, 25 (1999), 41-63, URL https://doi.org/10.1023/A:1005152704984.
![]() |
[19] |
U. Peschel, R. Morandotti, J. M. Arnold, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, T. Pertsch and F. Lederer, Optical discrete solitons in waveguide arrays. 2. dynamic properties, JOSA B, 19 (2002), 2637-2644.
![]() |
[20] |
M. Peyrard and A. R. Bishop, Statistical mechanics of a nonlinear model for dna denaturation, Physical Review Letters, 62 (1989), 2755.
doi: 10.1103/PhysRevLett.62.2755.![]() ![]() |
[21] |
A. Stefanov and P. G. Kevrekidis, Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations, Nonlinearity, 18 (2005), 1841-1857.
doi: 10.1088/0951-7715/18/4/022.![]() ![]() ![]() |
[22] |
A. A. Sukhorukov, Y. S. Kivshar, H. S. Eisenberg and Y. Silberberg, Spatial optical solitons in waveguide arrays, IEEE Journal of Quantum Electronics, 39 (2003), 31-50.
doi: 10.1109/JQE.2002.806184.![]() ![]() |
[23] |
A. Ustinov, M. Cirillo and B. Malomed, Fluxon dynamics in one-dimensional josephson-junction arrays, Physical Review B, 47 (1993), 8357.
doi: 10.1103/PhysRevB.47.8357.![]() ![]() |
Strichartz estimates
Degenerate point in Fourier side for
Domain in lattice and Fourier side for